EZ-Link™ Iodoacetyl-PEG2-Biotin
EZ-Link™ Iodoacetyl-PEG2-Biotin
Thermo Scientific™

EZ-Link™ Iodoacetyl-PEG2-Biotin

Thermo Scientific EZ-Link Iodoacetyl-PEG2-Biotin is a mid-length, haloacetyl-activated, sulfhydryl-reactive biotinylation reagent that contains a 2-unit ethylene glycol in its spacerRead more
Have Questions?
Catalog number 21334
Price (USD)
294.00
Each
Add to cart
Request bulk or custom format
Price (USD)
294.00
Each
Add to cart
Thermo Scientific EZ-Link Iodoacetyl-PEG2-Biotin is a mid-length, haloacetyl-activated, sulfhydryl-reactive biotinylation reagent that contains a 2-unit ethylene glycol in its spacer arm for increased water-solubility characteristics.

Features of EZ-Link Iodoacetyl-PEG2-Biotin:

Protein labeling—biotinylate antibodies or other proteins for use in protein methods
Thiol-reactive—reacts with sulfhydryls (-SH), such as the side-chain of cysteine (C)
Iodoacetyl-activated—perform reactions in the dark at pH 7.5 to 8.5 in Tris or borate buffer
Pegylated—spacer arm contains a hydrophilic, 2-unit, polyethylene glycol (PEG) group
Enhances solubility—pegylation imparts water solubility to the biotinylated molecule, helping to prevent aggregation of biotinylated antibodies stored in solution
Irreversible—forms permanent thioether bonds; spacer arm cannot be cleaved
Solubility—can be dissolved directly in aqueous buffers for labeling reactions
Medium length—spacer arm (total length added to target) is 24.7 angstroms

Iodoacetyl-PEG2-Biotin enables simple and efficient biotin labeling of antibodies, cysteine-containing peptides and other thiol-containing molecules. The iodoacetyl group reacts with reduced thiols (sulfhydryl groups,—SH) at alkaline pH to form stable thioether bond. The hydrophilic, 2-unit polyethylene glycol (PEG) spacer arm imparts water solubility that is transferred to the biotinylated molecule, thus reducing aggregation of labeled proteins stored in solution. The PEG segment adds length and flexibility to the spacer arm, minimizing steric hindrance involved with binding to avidin molecules.

We manufacture biotin reagents to ensure the highest possible overall product integrity, consistency and performance for the intended research applications.

Biotinylation reagents differ in reactivity, length, solubility, cell permeability and cleavability. Three types of sulfhydryl-reactive compounds are available: maleimido, iodoacetyl and pyridyldithiol. Iodoacetyl reagents specifically react with sulfhydryl groups (-SH) at pH 8.3 to form permanent thioether bonds.

In proteins, sulfhydryls exist where there are cysteine (C) residues. Cystine disulfide bonds must be reduced to make sulfhydryl groups available for labeling. Hinge-region disulfide bridges of antibodies can be selectively reduced to make functional half-antibodies that can be labeled.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Product TypeIodoacetyl-PEG2-Biotin
Quantity50 mg
Product LineEZ-Link™
Cell PermeabilityCell-Impermeant
Chemical ReactivityThiol
Reactive MoietyHaloacetyl
SolubilityDMF (Dimethylformamide), DMSO (Dimethylsulfoxide), Water
Label or DyeBiotin
SpacerMid-length, Pegylated
Label TypeBiotin & Analogs
Unit SizeEach
Contents & Storage
Store desiccated at 4°C. Shipped at ambient temperature.

Frequently asked questions (FAQs)

What is the advantage of using EZ-Link HPDP-Biotin over maleimide- or iodoacetyl-containing biotinylation reagents?

Both maleimide- and iodoacetyl-containing biotinylation reagents react with sulfhydryl (-SH) groups to form stable thioether bonds that are not cleavable. EZ-Link HPDP-Biotin on the other hand is a pyridyldithiol-biotin compound that reacts with -SH groups in near-neutral buffers to form reversible disulfide bonds. Because the disulfide group can be cleaved using DTT or other reducing agents, HPDP-Biotin is useful for labeling and affinity-purification applications that require recovery of the original, unmodified molecule.

Find additional tips, troubleshooting help, and resources within our Protein Purification and Isolation Support Center.