LanthaScreen™ TR-FRET RAR gamma Coactivator Assay Kit, goat
Product Image
Thermo Scientific™

LanthaScreen™ TR-FRET RAR gamma Coactivator Assay Kit, goat

This kit contains Goat Tb-Anti-GST antibody; other kit components are the same as kit A15123:The LanthaScreen™ TR-FRET Retinoic Acid ReceptorRead more
Have Questions?
Catalog number PV4411
Price (USD)
2,285.00
Each
Add to cart
Price (USD)
2,285.00
Each
Add to cart
This kit contains Goat Tb-Anti-GST antibody; other kit components are the same as kit A15123:

The LanthaScreen™ TR-FRET Retinoic Acid Receptor (RAR) gamma Coactivator Assay Kit provides a sensitive and robust method for high-throughput screening of potential RAR gamma ligands as agonists of coactivator recruitment. The homogeneous mix-and-read assay format results in a ligand EC50 composite value representing the amount of ligand required to bind to receptor, effect a conformational change, and recruit coactivator peptide (Figure 1).

How it works

The LanthaScreen™ TR-FRET RAR gamma Coactivator Assay Kit includes a terbium (Tb)-labeled anti-GST antibody, a fluorescein-labeled coactivator peptide, and a human RAR gamma ligand-binding domain (RAR gamma-LBD) that is tagged with glutathione-S-transferase (GST). To assay, RAR gamma-LBD is added to ligand test compounds, followed by addition of a mixture of the fluorescein-coactivator peptide and Tb-anti-GST antibody. After room temperature incubation, the TR-FRET 520:495 emission ratio is calculated and used to determine the EC50 from a dose response curve of the compound.

Contents and Storage:

The LanthaScreen™ TR-FRET RAR gamma Coactivator Assay Kit contains RAR gamma-LBD (GST) protein, fluorescein-labeled PGC1a coactivator peptide, Tb-anti-GST antibody, and buffers. Store components as indicated in the assay protocol (-80°C, -20°C, or +4°C).
For Research Use Only. Not for use in diagnostic procedures.
Specifications
ConjugateTb (Terbium)
Detection MethodFluorescence
For Use With (Equipment)Microplate Reader
Packaging384-well Plate
Assay EntryBiochemical coregulator interaction
Gene ID (Entrez)5916
ReadoutEnd Point
Shipping ConditionDry Ice
Target EntryRARG, RAR gamma, NR1B3
Product LineLanthaScreen™
For Use With (Application)Co-Factor Interaction Assay, TR-FRET
LigandRAR gamma
Product TypeTR-FRET RAR Gamma Coactivator Assay Kit
No. of Assays800 x 20 μL Assays
Unit SizeEach
Contents & Storage
Store in ultra-cold freezer (-68 to -85°C).

Frequently asked questions (FAQs)

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).