3D illustration of cancer cells spreading in the bone marrow

Study targets implicated in cancer hallmarks

Thermo Fisher Scientific offers a wide variety of immunoassays for cancer progression research. ELISA kits and multiplex immunoassays allow for detection and characterization of soluble biomarkers involved with various hallmarks of cancer.

PG2441-PJT8777-COL021261-Banners-Hallmarks-of-Cancer-Image-Global-F_Social-2

Uncover hallmarks of cancer with multiplex gene and protein assays using Luminex technology

How many types of cancer have been identified by researchers? Hundreds. However, there are certain properties that all cancer cells have in common. We call them Hallmarks.

Thanks to PhD Sigrun Badrnya, you will be able to uncover hallmarks of cancer with multiplex gene and protein assays using Luminex technology.

Take advantage of this resource and watch this on demand webinar now.

Watch the Webinar

Overview of the hallmarks of cancer

Cancer is a leading cause of death worldwide and has become a major public health issue in the developed countries. Cancer development is a multistep process, during which the cells accumulate genetic abnormalities, especially in oncogenes and tumor suppressor genes, contributing to uncontrolled proliferation. These abnormalities provide several growth advantages. Indeed, the transformation from normal cell to tumor cell frequently involves mutations in the cell genome.

Hanahan and Weinberg described six key changes that occur during the transformation from a normal cell to a tumor cell; these features may be considered hallmarks of cancer. These comprise of sustaining proliferative signaling, evading growth suppressors, resisting apoptosis, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, disrupting metabolism, and avoiding immune destruction [1] (Figure 1).

Four additional hallmarks and characteristics have been proposed by Hanahan, and these could be considered as part of the core hallmarks of cancer (Figure 1). More recently it has become evident that the cancer cell-derived extracellular vesicles/exosomes and their molecular cargo are implicated in almost all hallmarks of cancer as critical mediators of inter-cellular communication [1]. It has also been recognized that the tumor microenvironment plays a large critical part in tumorigenesis and malignant progression [2].

Schematic representation of different stages of cancer progression
Figure 1. The biological processes established during the development of human tumors.


Sustaining proliferative signaling

Expression of proliferation and survival signals by tumor cells allows them to grow continually as immortalized cells. To achieve growth independent of external growth factors, some tumor cells express activating mutations in proteins involved in cell growth. With a reduced dependence on exogenous growth signals, cancer cells can disrupt homeostasis and rapidly proliferate [3]. For example, ~50% of melanomas bear mutations in the gene coding for the serine-threonine kinase BRAF, and among these, about 90% are V600E point mutations [4].

Evading growth factors

With the ability to evade growth-inhibiting checkpoints, cancer cells can proliferate rapidly without suppression. Some of the most common tumor suppressants circumvented by cancer cells include signals of p53, retinoblastoma proteins, and transforming growth factor-beta (TGF-β) [5].

Retinoblastoma-associated proteins are responsible for regulating cells through growth-and-division cycles, whereas p53 proteins get signals from stress and abnormality sensors and can either halt cell-cycle progression or trigger apoptosis. In late-stage tumors, TGF-β can be found to activate cellular programs that confer traits to cancer cells associated with high-grade malignancy [1].

Activating invasion and metastasis

Approximately 90% of human cancer deaths are due to metastases, which are caused through invasion of adjacent tissues from the primary tumor site. A complex process, both invasion and metastasis involve utilizing changes in the physical coupling of cells to their environments and activation of extracellular proteases. Cell-cell adhesion molecules (CAMs), such as certain immunoglobulins, cadherins, and integrins, play a critical role in cancer cells invading and metastasizing new sites. E-cadherin is an example of a CAM that frequently observes downregulation and mutational inactivation in carcinomas [1].

Resisting cell death

A hallmark to many cancers, acquired resistance to apoptosis is a key feature in the survival and growth of cancer cells. Tumor cells limit apoptosis through the loss of p53 function, increased expression of antiapoptotic regulators or survival signals, or by downregulation of proapoptotic factors. This demonstrates that cancer cells operate diverse apoptosis-evading mechanisms during progression to malignancy [1].

Some targets associated in cell death include danger-associated molecular patterns which are released upon cell stress (HSP70, HSP90), HMGB1 in response to anti-cancer therapy and immunogenic cell death, and DKK1 which is secreted to regulate cell survival via the WNT signaling pathway.

Avoiding immune destruction and tumor-promoting inflammation

Although not fully characterized, evading immunological destruction by T and B lymphocytes, macrophages, and natural killer (NK) cells is considered a new emerging hallmark of cancer. While the immune system acts as a significant barrier to tumor formation, under certain conditions (such as immunodeficient/immunocompromised state), the tumors can form more frequently and grow quicker. Furthermore, immunogenic cells can disable or paralyze T lymphocytes or NK cells—evading the immune system [1].

It has also been noted that certain inflammatory responses (such as infections or wound healing) have the inadvertent effect of supporting tumor functions. For example, inflammation can supply tumor microenvironments with growth and survival factors, and various enzymes that facilitate angiogenesis and aid in invasion and metastasis [1].

Inducing angiogenesis

Some tumor cells overexpress vascular endothelial growth factor (VEGF), which is a major angiogenic factor. Secretion of angiogenic factors such as VEGF by tumor cells create blood vessels, which provide nutrients to the interior of tumors. These blood vessels are architecturally different from normal blood vessels being less organized. In order to grow, the tumors need to have blood supply to their interior, for delivery of nutrients and O2. The process of blood vessel growth is called angiogenesis, and most solid tumors secrete angiogenic factors [3].

Cancer cell-derived exosomes—a novel class of biomarkers

Cancer cell-derived exosomes have emerged as a novel class of biomarkers playing a significant role in almost all hallmarks of cancer. As crucial mediators of inter-cellular communication, they transfer their molecular cargo from the releasing cell to the recipient cell. Recent advances have particularly focused on cancer cell-derived exosomes that contribute to tumorigenic and metastatic processes. This is achieved by shaping the tumor microenvironment, which is a valuable source of biomarkers in liquid biopsies [6].

Exosomes are secreted by almost all cell types, including cancerous cells. Tumor-derived exosomes have been reportedly involved in cancer malignancy by supporting proliferation, establishing pre-metastatic niches, and regulating drug resistance. They can also assist in the regulation and mediation of organotrophic metastasis, re-education of stromal cells, endocrine/paracrine induction of cancers, angiogenesis activation, immune system modulation, and remodeling of the extracellular matrix [6].

Hallmarks of cancer ELISA kits

ELISA enables the detection and measurement of a wide assortment of markers that fall within the hallmarks of cancer. This allows further investigation into cancer progression using various biological sources. We offer ELISA kits for the study of important targets that are useful for cancer research, from growth factors to immune-oncology checkpoints.

See all cancer-related ELISA kits

Learn more about all ELISA kits

A few hallmarks of cancer protein targets and ELISA performance data

Table 1. View our ELISA kits for the following targets:

Dot-plot of increasing IL-8 concentrations
Figure 2. Representative standard curve for Human IL-8/NAP-1 ELISA. ELISA was performed using human interleukin 8 (Hu IL-8) ranging from 0–1,000 pg/ml (0, 15.6, 31.2, 62.5, 125, 250, 500, and 1,000 pg/ml) and Invitrogen IL-8 Human ELISA Kit. Absorbance was measured at 450 nm and standard curve was plotted.

Hallmarks of cancer ProQuantum high sensitivity immunoassays

ProQuantum high-sensitivity immunoassays are designed for ease-of-use, high performance protein detection without the need for specialized instruments. Utilizing proximity-based amplification technology, these assays combine analyte specific high-affinity antibody-antigen binding with signal detection and amplification capabilities of qPCR to achieve a simple yet powerful next-generation protein quantitation platform.

These assays can be used to detect low target levels while using a smaller volume of sample, which is beneficial when handling limited precious samples.

Find cancer-related ProQuantum assays

Learn more about how the ProQuantum immunoassays work
Read BioProbes Journal article: Introducing ProQuantum High-Sensitivity Immunoassays—The new generation of target-specific protein quantitation

A few hallmarks of cancer protein targets and ProQuantum assay performance data

Table 2. Hallmarks of cancer-related ProQuantum immunoassays. View all of our ProQuantum immunoassay kits for the following popular targets:

Evading growth factors
EGFVEGF
TGF-β 
Activating invasion and metastasis
c-MetCEA
Inducing angiogenesis
IL-8 (CXCL-8)Leptin
EGFVEGF
Graph plot of standard curve
Figure 3. Examples of Human EGF standard curve. The standard curve for EGF Human ProQuantum Immunoassay Kit shows a large dynamic range (0.00256–5,000 pg/mL) for EGF protein.

Hallmarks of cancer ProcartaPlex multiplex immunoassays

Invitrogen ProcartaPlex multiplex immunoassay panels provide a powerful biomarker detection tool to help distinguish diseased from non-diseased states and probe cellular processes involved with cancer progression. These Luminex xMAP-based assays allow for the simultaneous measurement and tracking of multiple soluble proteins and targets of interest over time to thoroughly understand markers in cancer development and metastasis. Select one of our preconfigured panels described below or use the Panel Configurator button below to customize your specific panel.

ProcartaPlex Panel Configurator

Learn more about ProcartaPlex multiplex immunoassays

Preconfigured hallmarks of cancer multiplex immunoassay panels and performance data

Graph showing quantitation of biomarkers in melanoma samples using preconfigured panels
Figure 4. Serum levels of checkpoint markers in melanoma patient samples. The Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 1 and Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 2 were used to measure various checkpoint markers in melanoma patient samples. Results as the mean of ungrouped human samples are shown for all targets of both panels. Used with permission from Exner R, Sachet M, Arnold T et al. (2016) Prognostic value of HMGB1 in early breast cancer patients under neoadjuvant chemotherapy. Cancer Med 5(9):2350-8.


Table 3. Preconfigured ProcartaPlex multiplex immunoassay panels for probing the hallmarks of cancer.

Sustaining proliferative signaling
Cat. No.NameSize
EPX080-15844-901

Cell Proliferation 8-Plex Human ProcartaPlex Panel

Target list [bead region]:
EpCAM [25], glypican-1 (GPC1) [34], HSP27 [36], HSP60 [13], IGF-2 [12], midkine (MK) [28], SPARC (osteonectin) [67], TrkB [61]

96 tests
Evading growth suppressors
Cat. No.NameSize
EPX110-12170-901

Growth Factor 11-Plex Human ProcartaPlex Panel

Target list [bead region]:
BDNF [57], EGF [56], FGF-2 [75], HGF [46], LIF [15], NGF beta [55], PDGF-BB [77], PlGF-1 [29], SCF [39], VEGF-A [78], VEGF-D [53]

96 tests
Activating invasion and apoptosis
Cat. No.NameSize
EPX130-15841-901

Cell Proliferation and Metastasis 13-Plex Human ProcartaPlex Panel 1

Target list [bead region]:
AFP (alpha-fetoprotein) [15], ADAM12 [33], beta-catenin [75], CD171 (NCAM-L1) [66], CD66f (PSBG-1) [51], galectin-1 [46], hCG [56], HO-1 (heme oxygenase 1) [30], IGFBP-1 [20], N-cadherin [14], nectin-4 [45], PAPP-A [39], thrombomodulin (TM) 1 [73]

96 tests
EPX120-15842-901

Cell Proliferation and Metastasis 12-Plex Human ProcartaPlex Panel 2

Target list [bead region]:
beta-2-microglobulin (B2M) [21], cathepsin D [44], CEA (CEACAM-5) [52], EGFR (ErbB1) [37], haptoglobin [63], HGFR (c-Met) [25], IGFBP-2 [76], IGFBP-3 [13], MIA [75], MIP-4 (CCL18) [61], periostin (OSF-2) [62], VE-cadherin [28]

96 tests
Resisting cell death
Cat. No.NameSize
EPX040-15843-901

Cell Death 4-Plex Human ProcartaPlex Panel

Target list [bead region]:
Dkk-1 [27], HMGB1 (HMG-1) [51] HSP70 [29], HSP90 [56]

96 tests
EPX120-15816-901

Apoptotic Cell Clearance 12-plex Human ProcartaPlex Panel

Target list [bead region]:
AXL [27], CD36 [38], CALR (CRT) [73], Gas6 [53], LOX-1 [76], MBL [55], Mer (MERTK) [26], CD31 (PECAM-1) [72], PAI-1 (Serpin) [35], uPAR [61], RAGE [47], TYRO3 [37]

96 tests
Avoiding immune destruction/tumor-promoting inflammation
Cat. No.NameSize
EPX14A-15803-901

Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 1

Target list [bead region]:
Immune stimulatory: CD27 [27], CD28 [15], CD137 (4-1BB) [26], GITR [57], HVEM [36] Immune inhibitory: BTLA [52], CD80 [61], CD152 (CTLA4) [33], IDO [46], LAG-3 [47], PD-1 [65], PD-L1 [66], PD-L2 [67], TIM-3 [14]

96 tests
EPX140-15815-901

Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 2

Target list [bead region]:
Activating: MICA [18], MICB [21], Perforin [53], ULBP-1 [73], ULBP-3 [77], ULBP-4 [78] Inhibitory: Arginase-1 [51], CD73 (NT5E) [30], CD96 (Tactile) [35], E-Cadherin [44], Nectin-2 [29], PVR [56], Siglec-7 [12], Siglec-9 [13]

96 tests
EPX090-15820-901

Immuno-Oncology Checkpoint 9-Plex Human ProcartaPlex Panel 3

Target list [bead region]:
B7-H6 [42], CD276 (B7-H3) [72], CD47 (IAP) [74], CD48 (BLAST-1) [19], CD134 (OX40) [55], ICOS Ligand (B7-H2) [34], TIMD-4 [39], S100A8/A9 [76], VISTA (B7-H5) [64]

96 tests
EPX370-15846-901

Immune Checkpoint 37-Plex Human ProcartaPlex Panel

Target list [bead region]:
arginase-1 [51], B7-H6 [42], BTLA [52], CD134 (OX40) [55], CD137 (4-1BB) [26], CD152 (CTLA4) [33], CD27 [27], CD276 (B7-H3) [72], CD28 [15], CD47 (IAP) [74], CD48 (BLAST-1) [19], CD73 (NT5E) [30], CD80 [61], CD96 (Tactile) [35], E-cadherin [44], GITR [57], HVEM [36], ICOS ligand (B7-H2) [34], IDO [46], LAG-3 [47], MICA [18], MICB [21], nectin-2 [29], PD-1 [65], PD-L1 [66], PD-L2 [67], perforin [53], PVR [56], S100A8/A9 [76], siglec-7 [12], siglec-9 [13], TIM-3 [14], TIMD-4 [39], ULBP-1 [73], ULBP-3 [77], ULBP-4 [78], VISTA (B7-H5) [64]

96 tests
Inducing angiogenesis
Cat. No.NameSize
EPX180-15806-901

Angiogenesis 18-Plex Human ProcartaPlex Panel 1

Target list [bead region]:
Angiopoietin-1 [13], BMP-9 [61], CD31 (PECAM-1) [76], EGF [56], EMMPRIN [47], Follistatin [55], FGF-2 [75], G-CSF (CSF-3) [42], HB-EGF [57], HGF [46], IL-8 (CXCL8) [27], Leptin [74], LYVE-1 [22], PDGF-BB [77], Syndecan [73], TIE-2 [67], VEGF-A [78], VEGF-D [53]

96 tests
EPX030-15807-901

Angiogenesis 3-Plex Human ProcartaPlex Panel 2

Target list [bead region]:
Angiogenin [12], Angiostatin [73], Endostatin [15]

96 tests
Cancer cell-derived exosomes
Cat. No.NameSize
EPX060-15845-901

Exosome Characterization 6-Plex Human ProcartaPlex Panel

Target list [bead region]:
CD9 [19], CD63 [63], CD81 [35], cytochrome c [54], syntenin-1 [48], VLA-4 [42]

96 tests

Multiplex gene expression and protein assays

QuantiGene RNA gene expression assays provide a fast and high-throughput solution for multiplexed gene expression quantitation, with simultaneous measurement of up to 80 genes of interest in a single well of a 96- or 384-well plate. The QuantiGene Plex assay is based on hybridization and incorporates branched DNA (bDNA) technology, which uses signal amplification rather than target amplification for direct measurement of RNA transcripts. The assay is run on the Luminex platform, has a simple workflow, and does not require RNA purification. These features allow the user to merge the QuantiGene workflow for gene expression profiling with the ProcartaPlex workflow for protein quantitation (Figure 5) using the same sample.

Learn more about QuantiGene RNA assays for gene expression profiling

Figure 5. Combined workflow for QuantiGene gene expression and ProcartaPlex protein quantitation assays.

Overview of the hallmarks of cancer

Cancer is a leading cause of death worldwide and has become a major public health issue in the developed countries. Cancer development is a multistep process, during which the cells accumulate genetic abnormalities, especially in oncogenes and tumor suppressor genes, contributing to uncontrolled proliferation. These abnormalities provide several growth advantages. Indeed, the transformation from normal cell to tumor cell frequently involves mutations in the cell genome.

Hanahan and Weinberg described six key changes that occur during the transformation from a normal cell to a tumor cell; these features may be considered hallmarks of cancer. These comprise of sustaining proliferative signaling, evading growth suppressors, resisting apoptosis, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, disrupting metabolism, and avoiding immune destruction [1] (Figure 1).

Four additional hallmarks and characteristics have been proposed by Hanahan, and these could be considered as part of the core hallmarks of cancer (Figure 1). More recently it has become evident that the cancer cell-derived extracellular vesicles/exosomes and their molecular cargo are implicated in almost all hallmarks of cancer as critical mediators of inter-cellular communication [1]. It has also been recognized that the tumor microenvironment plays a large critical part in tumorigenesis and malignant progression [2].

Schematic representation of different stages of cancer progression
Figure 1. The biological processes established during the development of human tumors.


Sustaining proliferative signaling

Expression of proliferation and survival signals by tumor cells allows them to grow continually as immortalized cells. To achieve growth independent of external growth factors, some tumor cells express activating mutations in proteins involved in cell growth. With a reduced dependence on exogenous growth signals, cancer cells can disrupt homeostasis and rapidly proliferate [3]. For example, ~50% of melanomas bear mutations in the gene coding for the serine-threonine kinase BRAF, and among these, about 90% are V600E point mutations [4].

Evading growth factors

With the ability to evade growth-inhibiting checkpoints, cancer cells can proliferate rapidly without suppression. Some of the most common tumor suppressants circumvented by cancer cells include signals of p53, retinoblastoma proteins, and transforming growth factor-beta (TGF-β) [5].

Retinoblastoma-associated proteins are responsible for regulating cells through growth-and-division cycles, whereas p53 proteins get signals from stress and abnormality sensors and can either halt cell-cycle progression or trigger apoptosis. In late-stage tumors, TGF-β can be found to activate cellular programs that confer traits to cancer cells associated with high-grade malignancy [1].

Activating invasion and metastasis

Approximately 90% of human cancer deaths are due to metastases, which are caused through invasion of adjacent tissues from the primary tumor site. A complex process, both invasion and metastasis involve utilizing changes in the physical coupling of cells to their environments and activation of extracellular proteases. Cell-cell adhesion molecules (CAMs), such as certain immunoglobulins, cadherins, and integrins, play a critical role in cancer cells invading and metastasizing new sites. E-cadherin is an example of a CAM that frequently observes downregulation and mutational inactivation in carcinomas [1].

Resisting cell death

A hallmark to many cancers, acquired resistance to apoptosis is a key feature in the survival and growth of cancer cells. Tumor cells limit apoptosis through the loss of p53 function, increased expression of antiapoptotic regulators or survival signals, or by downregulation of proapoptotic factors. This demonstrates that cancer cells operate diverse apoptosis-evading mechanisms during progression to malignancy [1].

Some targets associated in cell death include danger-associated molecular patterns which are released upon cell stress (HSP70, HSP90), HMGB1 in response to anti-cancer therapy and immunogenic cell death, and DKK1 which is secreted to regulate cell survival via the WNT signaling pathway.

Avoiding immune destruction and tumor-promoting inflammation

Although not fully characterized, evading immunological destruction by T and B lymphocytes, macrophages, and natural killer (NK) cells is considered a new emerging hallmark of cancer. While the immune system acts as a significant barrier to tumor formation, under certain conditions (such as immunodeficient/immunocompromised state), the tumors can form more frequently and grow quicker. Furthermore, immunogenic cells can disable or paralyze T lymphocytes or NK cells—evading the immune system [1].

It has also been noted that certain inflammatory responses (such as infections or wound healing) have the inadvertent effect of supporting tumor functions. For example, inflammation can supply tumor microenvironments with growth and survival factors, and various enzymes that facilitate angiogenesis and aid in invasion and metastasis [1].

Inducing angiogenesis

Some tumor cells overexpress vascular endothelial growth factor (VEGF), which is a major angiogenic factor. Secretion of angiogenic factors such as VEGF by tumor cells create blood vessels, which provide nutrients to the interior of tumors. These blood vessels are architecturally different from normal blood vessels being less organized. In order to grow, the tumors need to have blood supply to their interior, for delivery of nutrients and O2. The process of blood vessel growth is called angiogenesis, and most solid tumors secrete angiogenic factors [3].

Cancer cell-derived exosomes—a novel class of biomarkers

Cancer cell-derived exosomes have emerged as a novel class of biomarkers playing a significant role in almost all hallmarks of cancer. As crucial mediators of inter-cellular communication, they transfer their molecular cargo from the releasing cell to the recipient cell. Recent advances have particularly focused on cancer cell-derived exosomes that contribute to tumorigenic and metastatic processes. This is achieved by shaping the tumor microenvironment, which is a valuable source of biomarkers in liquid biopsies [6].

Exosomes are secreted by almost all cell types, including cancerous cells. Tumor-derived exosomes have been reportedly involved in cancer malignancy by supporting proliferation, establishing pre-metastatic niches, and regulating drug resistance. They can also assist in the regulation and mediation of organotrophic metastasis, re-education of stromal cells, endocrine/paracrine induction of cancers, angiogenesis activation, immune system modulation, and remodeling of the extracellular matrix [6].

Hallmarks of cancer ELISA kits

ELISA enables the detection and measurement of a wide assortment of markers that fall within the hallmarks of cancer. This allows further investigation into cancer progression using various biological sources. We offer ELISA kits for the study of important targets that are useful for cancer research, from growth factors to immune-oncology checkpoints.

See all cancer-related ELISA kits

Learn more about all ELISA kits

A few hallmarks of cancer protein targets and ELISA performance data

Table 1. View our ELISA kits for the following targets:

Dot-plot of increasing IL-8 concentrations
Figure 2. Representative standard curve for Human IL-8/NAP-1 ELISA. ELISA was performed using human interleukin 8 (Hu IL-8) ranging from 0–1,000 pg/ml (0, 15.6, 31.2, 62.5, 125, 250, 500, and 1,000 pg/ml) and Invitrogen IL-8 Human ELISA Kit. Absorbance was measured at 450 nm and standard curve was plotted.

Hallmarks of cancer ProQuantum high sensitivity immunoassays

ProQuantum high-sensitivity immunoassays are designed for ease-of-use, high performance protein detection without the need for specialized instruments. Utilizing proximity-based amplification technology, these assays combine analyte specific high-affinity antibody-antigen binding with signal detection and amplification capabilities of qPCR to achieve a simple yet powerful next-generation protein quantitation platform.

These assays can be used to detect low target levels while using a smaller volume of sample, which is beneficial when handling limited precious samples.

Find cancer-related ProQuantum assays

Learn more about how the ProQuantum immunoassays work
Read BioProbes Journal article: Introducing ProQuantum High-Sensitivity Immunoassays—The new generation of target-specific protein quantitation

A few hallmarks of cancer protein targets and ProQuantum assay performance data

Table 2. Hallmarks of cancer-related ProQuantum immunoassays. View all of our ProQuantum immunoassay kits for the following popular targets:

Evading growth factors
EGFVEGF
TGF-β 
Activating invasion and metastasis
c-MetCEA
Inducing angiogenesis
IL-8 (CXCL-8)Leptin
EGFVEGF
Graph plot of standard curve
Figure 3. Examples of Human EGF standard curve. The standard curve for EGF Human ProQuantum Immunoassay Kit shows a large dynamic range (0.00256–5,000 pg/mL) for EGF protein.

Hallmarks of cancer ProcartaPlex multiplex immunoassays

Invitrogen ProcartaPlex multiplex immunoassay panels provide a powerful biomarker detection tool to help distinguish diseased from non-diseased states and probe cellular processes involved with cancer progression. These Luminex xMAP-based assays allow for the simultaneous measurement and tracking of multiple soluble proteins and targets of interest over time to thoroughly understand markers in cancer development and metastasis. Select one of our preconfigured panels described below or use the Panel Configurator button below to customize your specific panel.

ProcartaPlex Panel Configurator

Learn more about ProcartaPlex multiplex immunoassays

Preconfigured hallmarks of cancer multiplex immunoassay panels and performance data

Graph showing quantitation of biomarkers in melanoma samples using preconfigured panels
Figure 4. Serum levels of checkpoint markers in melanoma patient samples. The Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 1 and Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 2 were used to measure various checkpoint markers in melanoma patient samples. Results as the mean of ungrouped human samples are shown for all targets of both panels. Used with permission from Exner R, Sachet M, Arnold T et al. (2016) Prognostic value of HMGB1 in early breast cancer patients under neoadjuvant chemotherapy. Cancer Med 5(9):2350-8.


Table 3. Preconfigured ProcartaPlex multiplex immunoassay panels for probing the hallmarks of cancer.

Sustaining proliferative signaling
Cat. No.NameSize
EPX080-15844-901

Cell Proliferation 8-Plex Human ProcartaPlex Panel

Target list [bead region]:
EpCAM [25], glypican-1 (GPC1) [34], HSP27 [36], HSP60 [13], IGF-2 [12], midkine (MK) [28], SPARC (osteonectin) [67], TrkB [61]

96 tests
Evading growth suppressors
Cat. No.NameSize
EPX110-12170-901

Growth Factor 11-Plex Human ProcartaPlex Panel

Target list [bead region]:
BDNF [57], EGF [56], FGF-2 [75], HGF [46], LIF [15], NGF beta [55], PDGF-BB [77], PlGF-1 [29], SCF [39], VEGF-A [78], VEGF-D [53]

96 tests
Activating invasion and apoptosis
Cat. No.NameSize
EPX130-15841-901

Cell Proliferation and Metastasis 13-Plex Human ProcartaPlex Panel 1

Target list [bead region]:
AFP (alpha-fetoprotein) [15], ADAM12 [33], beta-catenin [75], CD171 (NCAM-L1) [66], CD66f (PSBG-1) [51], galectin-1 [46], hCG [56], HO-1 (heme oxygenase 1) [30], IGFBP-1 [20], N-cadherin [14], nectin-4 [45], PAPP-A [39], thrombomodulin (TM) 1 [73]

96 tests
EPX120-15842-901

Cell Proliferation and Metastasis 12-Plex Human ProcartaPlex Panel 2

Target list [bead region]:
beta-2-microglobulin (B2M) [21], cathepsin D [44], CEA (CEACAM-5) [52], EGFR (ErbB1) [37], haptoglobin [63], HGFR (c-Met) [25], IGFBP-2 [76], IGFBP-3 [13], MIA [75], MIP-4 (CCL18) [61], periostin (OSF-2) [62], VE-cadherin [28]

96 tests
Resisting cell death
Cat. No.NameSize
EPX040-15843-901

Cell Death 4-Plex Human ProcartaPlex Panel

Target list [bead region]:
Dkk-1 [27], HMGB1 (HMG-1) [51] HSP70 [29], HSP90 [56]

96 tests
EPX120-15816-901

Apoptotic Cell Clearance 12-plex Human ProcartaPlex Panel

Target list [bead region]:
AXL [27], CD36 [38], CALR (CRT) [73], Gas6 [53], LOX-1 [76], MBL [55], Mer (MERTK) [26], CD31 (PECAM-1) [72], PAI-1 (Serpin) [35], uPAR [61], RAGE [47], TYRO3 [37]

96 tests
Avoiding immune destruction/tumor-promoting inflammation
Cat. No.NameSize
EPX14A-15803-901

Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 1

Target list [bead region]:
Immune stimulatory: CD27 [27], CD28 [15], CD137 (4-1BB) [26], GITR [57], HVEM [36] Immune inhibitory: BTLA [52], CD80 [61], CD152 (CTLA4) [33], IDO [46], LAG-3 [47], PD-1 [65], PD-L1 [66], PD-L2 [67], TIM-3 [14]

96 tests
EPX140-15815-901

Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 2

Target list [bead region]:
Activating: MICA [18], MICB [21], Perforin [53], ULBP-1 [73], ULBP-3 [77], ULBP-4 [78] Inhibitory: Arginase-1 [51], CD73 (NT5E) [30], CD96 (Tactile) [35], E-Cadherin [44], Nectin-2 [29], PVR [56], Siglec-7 [12], Siglec-9 [13]

96 tests
EPX090-15820-901

Immuno-Oncology Checkpoint 9-Plex Human ProcartaPlex Panel 3

Target list [bead region]:
B7-H6 [42], CD276 (B7-H3) [72], CD47 (IAP) [74], CD48 (BLAST-1) [19], CD134 (OX40) [55], ICOS Ligand (B7-H2) [34], TIMD-4 [39], S100A8/A9 [76], VISTA (B7-H5) [64]

96 tests
EPX370-15846-901

Immune Checkpoint 37-Plex Human ProcartaPlex Panel

Target list [bead region]:
arginase-1 [51], B7-H6 [42], BTLA [52], CD134 (OX40) [55], CD137 (4-1BB) [26], CD152 (CTLA4) [33], CD27 [27], CD276 (B7-H3) [72], CD28 [15], CD47 (IAP) [74], CD48 (BLAST-1) [19], CD73 (NT5E) [30], CD80 [61], CD96 (Tactile) [35], E-cadherin [44], GITR [57], HVEM [36], ICOS ligand (B7-H2) [34], IDO [46], LAG-3 [47], MICA [18], MICB [21], nectin-2 [29], PD-1 [65], PD-L1 [66], PD-L2 [67], perforin [53], PVR [56], S100A8/A9 [76], siglec-7 [12], siglec-9 [13], TIM-3 [14], TIMD-4 [39], ULBP-1 [73], ULBP-3 [77], ULBP-4 [78], VISTA (B7-H5) [64]

96 tests
Inducing angiogenesis
Cat. No.NameSize
EPX180-15806-901

Angiogenesis 18-Plex Human ProcartaPlex Panel 1

Target list [bead region]:
Angiopoietin-1 [13], BMP-9 [61], CD31 (PECAM-1) [76], EGF [56], EMMPRIN [47], Follistatin [55], FGF-2 [75], G-CSF (CSF-3) [42], HB-EGF [57], HGF [46], IL-8 (CXCL8) [27], Leptin [74], LYVE-1 [22], PDGF-BB [77], Syndecan [73], TIE-2 [67], VEGF-A [78], VEGF-D [53]

96 tests
EPX030-15807-901

Angiogenesis 3-Plex Human ProcartaPlex Panel 2

Target list [bead region]:
Angiogenin [12], Angiostatin [73], Endostatin [15]

96 tests
Cancer cell-derived exosomes
Cat. No.NameSize
EPX060-15845-901

Exosome Characterization 6-Plex Human ProcartaPlex Panel

Target list [bead region]:
CD9 [19], CD63 [63], CD81 [35], cytochrome c [54], syntenin-1 [48], VLA-4 [42]

96 tests

Multiplex gene expression and protein assays

QuantiGene RNA gene expression assays provide a fast and high-throughput solution for multiplexed gene expression quantitation, with simultaneous measurement of up to 80 genes of interest in a single well of a 96- or 384-well plate. The QuantiGene Plex assay is based on hybridization and incorporates branched DNA (bDNA) technology, which uses signal amplification rather than target amplification for direct measurement of RNA transcripts. The assay is run on the Luminex platform, has a simple workflow, and does not require RNA purification. These features allow the user to merge the QuantiGene workflow for gene expression profiling with the ProcartaPlex workflow for protein quantitation (Figure 5) using the same sample.

Learn more about QuantiGene RNA assays for gene expression profiling

Figure 5. Combined workflow for QuantiGene gene expression and ProcartaPlex protein quantitation assays.

Additional resources for hallmarks of cancer immunoassays

Thumbnail of hallmarks of cancer: new ProcartaPlex immunoassay panels for screening
Thumbnail of white paper: detection of soluble immune checkpoint molecules with ProcartaPlex panels
Thumbnail of biomarker guide to protein and RNA quantitation

Immunoassay instruments

References