Study targets implicated in cancer hallmarks
Thermo Fisher Scientific offers a wide variety of immunoassays for cancer progression research. ELISA kits and multiplex immunoassays allow for detection and characterization of soluble biomarkers involved with various hallmarks of cancer.
Uncover hallmarks of cancer with multiplex gene and protein assays using Luminex technology
How many types of cancer have been identified by researchers? Hundreds. However, there are certain properties that all cancer cells have in common. We call them Hallmarks.
Thanks to PhD Sigrun Badrnya, you will be able to uncover hallmarks of cancer with multiplex gene and protein assays using Luminex technology.
Take advantage of this resource and watch this on demand webinar now.
Overview of the hallmarks of cancer
Cancer is a leading cause of death worldwide and has become a major public health issue in the developed countries. Cancer development is a multistep process, during which the cells accumulate genetic abnormalities, especially in oncogenes and tumor suppressor genes, contributing to uncontrolled proliferation. These abnormalities provide several growth advantages. Indeed, the transformation from normal cell to tumor cell frequently involves mutations in the cell genome.
Hanahan and Weinberg described six key changes that occur during the transformation from a normal cell to a tumor cell; these features may be considered hallmarks of cancer. These comprise of sustaining proliferative signaling, evading growth suppressors, resisting apoptosis, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, disrupting metabolism, and avoiding immune destruction [1] (Figure 1).
Four additional hallmarks and characteristics have been proposed by Hanahan, and these could be considered as part of the core hallmarks of cancer (Figure 1). More recently it has become evident that the cancer cell-derived extracellular vesicles/exosomes and their molecular cargo are implicated in almost all hallmarks of cancer as critical mediators of inter-cellular communication [1]. It has also been recognized that the tumor microenvironment plays a large critical part in tumorigenesis and malignant progression [2].
Sustaining proliferative signaling
Expression of proliferation and survival signals by tumor cells allows them to grow continually as immortalized cells. To achieve growth independent of external growth factors, some tumor cells express activating mutations in proteins involved in cell growth. With a reduced dependence on exogenous growth signals, cancer cells can disrupt homeostasis and rapidly proliferate [3]. For example, ~50% of melanomas bear mutations in the gene coding for the serine-threonine kinase BRAF, and among these, about 90% are V600E point mutations [4].
Evading growth factors
With the ability to evade growth-inhibiting checkpoints, cancer cells can proliferate rapidly without suppression. Some of the most common tumor suppressants circumvented by cancer cells include signals of p53, retinoblastoma proteins, and transforming growth factor-beta (TGF-β) [5].
Retinoblastoma-associated proteins are responsible for regulating cells through growth-and-division cycles, whereas p53 proteins get signals from stress and abnormality sensors and can either halt cell-cycle progression or trigger apoptosis. In late-stage tumors, TGF-β can be found to activate cellular programs that confer traits to cancer cells associated with high-grade malignancy [1].
Activating invasion and metastasis
Approximately 90% of human cancer deaths are due to metastases, which are caused through invasion of adjacent tissues from the primary tumor site. A complex process, both invasion and metastasis involve utilizing changes in the physical coupling of cells to their environments and activation of extracellular proteases. Cell-cell adhesion molecules (CAMs), such as certain immunoglobulins, cadherins, and integrins, play a critical role in cancer cells invading and metastasizing new sites. E-cadherin is an example of a CAM that frequently observes downregulation and mutational inactivation in carcinomas [1].
Resisting cell death
A hallmark to many cancers, acquired resistance to apoptosis is a key feature in the survival and growth of cancer cells. Tumor cells limit apoptosis through the loss of p53 function, increased expression of antiapoptotic regulators or survival signals, or by downregulation of proapoptotic factors. This demonstrates that cancer cells operate diverse apoptosis-evading mechanisms during progression to malignancy [1].
Some targets associated in cell death include danger-associated molecular patterns which are released upon cell stress (HSP70, HSP90), HMGB1 in response to anti-cancer therapy and immunogenic cell death, and DKK1 which is secreted to regulate cell survival via the WNT signaling pathway.
Avoiding immune destruction and tumor-promoting inflammation
Although not fully characterized, evading immunological destruction by T and B lymphocytes, macrophages, and natural killer (NK) cells is considered a new emerging hallmark of cancer. While the immune system acts as a significant barrier to tumor formation, under certain conditions (such as immunodeficient/immunocompromised state), the tumors can form more frequently and grow quicker. Furthermore, immunogenic cells can disable or paralyze T lymphocytes or NK cells—evading the immune system [1].
It has also been noted that certain inflammatory responses (such as infections or wound healing) have the inadvertent effect of supporting tumor functions. For example, inflammation can supply tumor microenvironments with growth and survival factors, and various enzymes that facilitate angiogenesis and aid in invasion and metastasis [1].
Inducing angiogenesis
Some tumor cells overexpress vascular endothelial growth factor (VEGF), which is a major angiogenic factor. Secretion of angiogenic factors such as VEGF by tumor cells create blood vessels, which provide nutrients to the interior of tumors. These blood vessels are architecturally different from normal blood vessels being less organized. In order to grow, the tumors need to have blood supply to their interior, for delivery of nutrients and O2. The process of blood vessel growth is called angiogenesis, and most solid tumors secrete angiogenic factors [3].
Cancer cell-derived exosomes—a novel class of biomarkers
Cancer cell-derived exosomes have emerged as a novel class of biomarkers playing a significant role in almost all hallmarks of cancer. As crucial mediators of inter-cellular communication, they transfer their molecular cargo from the releasing cell to the recipient cell. Recent advances have particularly focused on cancer cell-derived exosomes that contribute to tumorigenic and metastatic processes. This is achieved by shaping the tumor microenvironment, which is a valuable source of biomarkers in liquid biopsies [6].
Exosomes are secreted by almost all cell types, including cancerous cells. Tumor-derived exosomes have been reportedly involved in cancer malignancy by supporting proliferation, establishing pre-metastatic niches, and regulating drug resistance. They can also assist in the regulation and mediation of organotrophic metastasis, re-education of stromal cells, endocrine/paracrine induction of cancers, angiogenesis activation, immune system modulation, and remodeling of the extracellular matrix [6].
Hallmarks of cancer ELISA kits
ELISA enables the detection and measurement of a wide assortment of markers that fall within the hallmarks of cancer. This allows further investigation into cancer progression using various biological sources. We offer ELISA kits for the study of important targets that are useful for cancer research, from growth factors to immune-oncology checkpoints.
A few hallmarks of cancer protein targets and ELISA performance data
Table 1. View our ELISA kits for the following targets:
Hallmarks of cancer ProQuantum high sensitivity immunoassays
ProQuantum high-sensitivity immunoassays are designed for ease-of-use, high performance protein detection without the need for specialized instruments. Utilizing proximity-based amplification technology, these assays combine analyte specific high-affinity antibody-antigen binding with signal detection and amplification capabilities of qPCR to achieve a simple yet powerful next-generation protein quantitation platform.
These assays can be used to detect low target levels while using a smaller volume of sample, which is beneficial when handling limited precious samples.
Find cancer-related ProQuantum assays
Learn more about how the ProQuantum immunoassays work
Read BioProbes Journal article: Introducing ProQuantum High-Sensitivity Immunoassays—The new generation of target-specific protein quantitation
A few hallmarks of cancer protein targets and ProQuantum assay performance data
Table 2. Hallmarks of cancer-related ProQuantum immunoassays. View all of our ProQuantum immunoassay kits for the following popular targets:
Hallmarks of cancer ProcartaPlex multiplex immunoassays
Invitrogen ProcartaPlex multiplex immunoassay panels provide a powerful biomarker detection tool to help distinguish diseased from non-diseased states and probe cellular processes involved with cancer progression. These Luminex xMAP-based assays allow for the simultaneous measurement and tracking of multiple soluble proteins and targets of interest over time to thoroughly understand markers in cancer development and metastasis. Select one of our preconfigured panels described below or use the Panel Configurator button below to customize your specific panel.
Preconfigured hallmarks of cancer multiplex immunoassay panels and performance data
Table 3. Preconfigured ProcartaPlex multiplex immunoassay panels for probing the hallmarks of cancer.
Sustaining proliferative signaling | ||
---|---|---|
Cat. No. | Name | Size |
EPX080-15844-901 | Cell Proliferation 8-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Evading growth suppressors | ||
Cat. No. | Name | Size |
EPX110-12170-901 | Growth Factor 11-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Activating invasion and apoptosis | ||
Cat. No. | Name | Size |
EPX130-15841-901 | Cell Proliferation and Metastasis 13-Plex Human ProcartaPlex Panel 1 Target list [bead region]: | 96 tests |
EPX120-15842-901 | Cell Proliferation and Metastasis 12-Plex Human ProcartaPlex Panel 2 Target list [bead region]: | 96 tests |
Resisting cell death | ||
Cat. No. | Name | Size |
EPX040-15843-901 | Cell Death 4-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
EPX120-15816-901 | Apoptotic Cell Clearance 12-plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Avoiding immune destruction/tumor-promoting inflammation | ||
Cat. No. | Name | Size |
EPX14A-15803-901 | Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 1 Target list [bead region]: | 96 tests |
EPX140-15815-901 | Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 2 Target list [bead region]: | 96 tests |
EPX090-15820-901 | Immuno-Oncology Checkpoint 9-Plex Human ProcartaPlex Panel 3 Target list [bead region]: | 96 tests |
EPX370-15846-901 | Immune Checkpoint 37-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Inducing angiogenesis | ||
Cat. No. | Name | Size |
EPX180-15806-901 | Angiogenesis 18-Plex Human ProcartaPlex Panel 1 Target list [bead region]: | 96 tests |
EPX030-15807-901 | Angiogenesis 3-Plex Human ProcartaPlex Panel 2 Target list [bead region]: | 96 tests |
Cancer cell-derived exosomes | ||
Cat. No. | Name | Size |
EPX060-15845-901 | Exosome Characterization 6-Plex Human ProcartaPlex Panel
| 96 tests |
Multiplex gene expression and protein assays
QuantiGene RNA gene expression assays provide a fast and high-throughput solution for multiplexed gene expression quantitation, with simultaneous measurement of up to 80 genes of interest in a single well of a 96- or 384-well plate. The QuantiGene Plex assay is based on hybridization and incorporates branched DNA (bDNA) technology, which uses signal amplification rather than target amplification for direct measurement of RNA transcripts. The assay is run on the Luminex platform, has a simple workflow, and does not require RNA purification. These features allow the user to merge the QuantiGene workflow for gene expression profiling with the ProcartaPlex workflow for protein quantitation (Figure 5) using the same sample.
Learn more about QuantiGene RNA assays for gene expression profiling
Overview of the hallmarks of cancer
Cancer is a leading cause of death worldwide and has become a major public health issue in the developed countries. Cancer development is a multistep process, during which the cells accumulate genetic abnormalities, especially in oncogenes and tumor suppressor genes, contributing to uncontrolled proliferation. These abnormalities provide several growth advantages. Indeed, the transformation from normal cell to tumor cell frequently involves mutations in the cell genome.
Hanahan and Weinberg described six key changes that occur during the transformation from a normal cell to a tumor cell; these features may be considered hallmarks of cancer. These comprise of sustaining proliferative signaling, evading growth suppressors, resisting apoptosis, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, disrupting metabolism, and avoiding immune destruction [1] (Figure 1).
Four additional hallmarks and characteristics have been proposed by Hanahan, and these could be considered as part of the core hallmarks of cancer (Figure 1). More recently it has become evident that the cancer cell-derived extracellular vesicles/exosomes and their molecular cargo are implicated in almost all hallmarks of cancer as critical mediators of inter-cellular communication [1]. It has also been recognized that the tumor microenvironment plays a large critical part in tumorigenesis and malignant progression [2].
Sustaining proliferative signaling
Expression of proliferation and survival signals by tumor cells allows them to grow continually as immortalized cells. To achieve growth independent of external growth factors, some tumor cells express activating mutations in proteins involved in cell growth. With a reduced dependence on exogenous growth signals, cancer cells can disrupt homeostasis and rapidly proliferate [3]. For example, ~50% of melanomas bear mutations in the gene coding for the serine-threonine kinase BRAF, and among these, about 90% are V600E point mutations [4].
Evading growth factors
With the ability to evade growth-inhibiting checkpoints, cancer cells can proliferate rapidly without suppression. Some of the most common tumor suppressants circumvented by cancer cells include signals of p53, retinoblastoma proteins, and transforming growth factor-beta (TGF-β) [5].
Retinoblastoma-associated proteins are responsible for regulating cells through growth-and-division cycles, whereas p53 proteins get signals from stress and abnormality sensors and can either halt cell-cycle progression or trigger apoptosis. In late-stage tumors, TGF-β can be found to activate cellular programs that confer traits to cancer cells associated with high-grade malignancy [1].
Activating invasion and metastasis
Approximately 90% of human cancer deaths are due to metastases, which are caused through invasion of adjacent tissues from the primary tumor site. A complex process, both invasion and metastasis involve utilizing changes in the physical coupling of cells to their environments and activation of extracellular proteases. Cell-cell adhesion molecules (CAMs), such as certain immunoglobulins, cadherins, and integrins, play a critical role in cancer cells invading and metastasizing new sites. E-cadherin is an example of a CAM that frequently observes downregulation and mutational inactivation in carcinomas [1].
Resisting cell death
A hallmark to many cancers, acquired resistance to apoptosis is a key feature in the survival and growth of cancer cells. Tumor cells limit apoptosis through the loss of p53 function, increased expression of antiapoptotic regulators or survival signals, or by downregulation of proapoptotic factors. This demonstrates that cancer cells operate diverse apoptosis-evading mechanisms during progression to malignancy [1].
Some targets associated in cell death include danger-associated molecular patterns which are released upon cell stress (HSP70, HSP90), HMGB1 in response to anti-cancer therapy and immunogenic cell death, and DKK1 which is secreted to regulate cell survival via the WNT signaling pathway.
Avoiding immune destruction and tumor-promoting inflammation
Although not fully characterized, evading immunological destruction by T and B lymphocytes, macrophages, and natural killer (NK) cells is considered a new emerging hallmark of cancer. While the immune system acts as a significant barrier to tumor formation, under certain conditions (such as immunodeficient/immunocompromised state), the tumors can form more frequently and grow quicker. Furthermore, immunogenic cells can disable or paralyze T lymphocytes or NK cells—evading the immune system [1].
It has also been noted that certain inflammatory responses (such as infections or wound healing) have the inadvertent effect of supporting tumor functions. For example, inflammation can supply tumor microenvironments with growth and survival factors, and various enzymes that facilitate angiogenesis and aid in invasion and metastasis [1].
Inducing angiogenesis
Some tumor cells overexpress vascular endothelial growth factor (VEGF), which is a major angiogenic factor. Secretion of angiogenic factors such as VEGF by tumor cells create blood vessels, which provide nutrients to the interior of tumors. These blood vessels are architecturally different from normal blood vessels being less organized. In order to grow, the tumors need to have blood supply to their interior, for delivery of nutrients and O2. The process of blood vessel growth is called angiogenesis, and most solid tumors secrete angiogenic factors [3].
Cancer cell-derived exosomes—a novel class of biomarkers
Cancer cell-derived exosomes have emerged as a novel class of biomarkers playing a significant role in almost all hallmarks of cancer. As crucial mediators of inter-cellular communication, they transfer their molecular cargo from the releasing cell to the recipient cell. Recent advances have particularly focused on cancer cell-derived exosomes that contribute to tumorigenic and metastatic processes. This is achieved by shaping the tumor microenvironment, which is a valuable source of biomarkers in liquid biopsies [6].
Exosomes are secreted by almost all cell types, including cancerous cells. Tumor-derived exosomes have been reportedly involved in cancer malignancy by supporting proliferation, establishing pre-metastatic niches, and regulating drug resistance. They can also assist in the regulation and mediation of organotrophic metastasis, re-education of stromal cells, endocrine/paracrine induction of cancers, angiogenesis activation, immune system modulation, and remodeling of the extracellular matrix [6].
Hallmarks of cancer ELISA kits
ELISA enables the detection and measurement of a wide assortment of markers that fall within the hallmarks of cancer. This allows further investigation into cancer progression using various biological sources. We offer ELISA kits for the study of important targets that are useful for cancer research, from growth factors to immune-oncology checkpoints.
A few hallmarks of cancer protein targets and ELISA performance data
Table 1. View our ELISA kits for the following targets:
Hallmarks of cancer ProQuantum high sensitivity immunoassays
ProQuantum high-sensitivity immunoassays are designed for ease-of-use, high performance protein detection without the need for specialized instruments. Utilizing proximity-based amplification technology, these assays combine analyte specific high-affinity antibody-antigen binding with signal detection and amplification capabilities of qPCR to achieve a simple yet powerful next-generation protein quantitation platform.
These assays can be used to detect low target levels while using a smaller volume of sample, which is beneficial when handling limited precious samples.
Find cancer-related ProQuantum assays
Learn more about how the ProQuantum immunoassays work
Read BioProbes Journal article: Introducing ProQuantum High-Sensitivity Immunoassays—The new generation of target-specific protein quantitation
A few hallmarks of cancer protein targets and ProQuantum assay performance data
Table 2. Hallmarks of cancer-related ProQuantum immunoassays. View all of our ProQuantum immunoassay kits for the following popular targets:
Hallmarks of cancer ProcartaPlex multiplex immunoassays
Invitrogen ProcartaPlex multiplex immunoassay panels provide a powerful biomarker detection tool to help distinguish diseased from non-diseased states and probe cellular processes involved with cancer progression. These Luminex xMAP-based assays allow for the simultaneous measurement and tracking of multiple soluble proteins and targets of interest over time to thoroughly understand markers in cancer development and metastasis. Select one of our preconfigured panels described below or use the Panel Configurator button below to customize your specific panel.
Preconfigured hallmarks of cancer multiplex immunoassay panels and performance data
Table 3. Preconfigured ProcartaPlex multiplex immunoassay panels for probing the hallmarks of cancer.
Sustaining proliferative signaling | ||
---|---|---|
Cat. No. | Name | Size |
EPX080-15844-901 | Cell Proliferation 8-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Evading growth suppressors | ||
Cat. No. | Name | Size |
EPX110-12170-901 | Growth Factor 11-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Activating invasion and apoptosis | ||
Cat. No. | Name | Size |
EPX130-15841-901 | Cell Proliferation and Metastasis 13-Plex Human ProcartaPlex Panel 1 Target list [bead region]: | 96 tests |
EPX120-15842-901 | Cell Proliferation and Metastasis 12-Plex Human ProcartaPlex Panel 2 Target list [bead region]: | 96 tests |
Resisting cell death | ||
Cat. No. | Name | Size |
EPX040-15843-901 | Cell Death 4-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
EPX120-15816-901 | Apoptotic Cell Clearance 12-plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Avoiding immune destruction/tumor-promoting inflammation | ||
Cat. No. | Name | Size |
EPX14A-15803-901 | Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 1 Target list [bead region]: | 96 tests |
EPX140-15815-901 | Immuno-Oncology Checkpoint 14-Plex Human ProcartaPlex Panel 2 Target list [bead region]: | 96 tests |
EPX090-15820-901 | Immuno-Oncology Checkpoint 9-Plex Human ProcartaPlex Panel 3 Target list [bead region]: | 96 tests |
EPX370-15846-901 | Immune Checkpoint 37-Plex Human ProcartaPlex Panel Target list [bead region]: | 96 tests |
Inducing angiogenesis | ||
Cat. No. | Name | Size |
EPX180-15806-901 | Angiogenesis 18-Plex Human ProcartaPlex Panel 1 Target list [bead region]: | 96 tests |
EPX030-15807-901 | Angiogenesis 3-Plex Human ProcartaPlex Panel 2 Target list [bead region]: | 96 tests |
Cancer cell-derived exosomes | ||
Cat. No. | Name | Size |
EPX060-15845-901 | Exosome Characterization 6-Plex Human ProcartaPlex Panel
| 96 tests |
Multiplex gene expression and protein assays
QuantiGene RNA gene expression assays provide a fast and high-throughput solution for multiplexed gene expression quantitation, with simultaneous measurement of up to 80 genes of interest in a single well of a 96- or 384-well plate. The QuantiGene Plex assay is based on hybridization and incorporates branched DNA (bDNA) technology, which uses signal amplification rather than target amplification for direct measurement of RNA transcripts. The assay is run on the Luminex platform, has a simple workflow, and does not require RNA purification. These features allow the user to merge the QuantiGene workflow for gene expression profiling with the ProcartaPlex workflow for protein quantitation (Figure 5) using the same sample.
Learn more about QuantiGene RNA assays for gene expression profiling
Additional resources for hallmarks of cancer immunoassays
Immunoassay instruments
References
- Hanahan, D., Weinberg, R.A. “Hallmarks of cancer: the next generation.” Cell 144, no. 5 (March 2011): 646–674.
- Hanahan, D. “Hallmarks of Cancer: New Dimensions.” Cancer Discovery 12, no. 1 (January 2022): 31–46.
- Hanahan, D., Weinberg, R.A. “The hallmarks of cancer.” Cell 100, no. 1 (January 2000): 57–70.
- Ascierto, P.A., et al. “The role of BRAF V600 mutation in melanoma.” Journal of Translational Medicine 10 (July 2012): 85.
- Nahta, R., et al. “Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression.” Carcinogenesis 36, no. 1 (June 2015): S2–S18.
- Tai, Y-L., et al. “Exosomes in cancer development and clinical applications.” Cancer Science 109 (August 2018): 2364–2374.