Talos F200C Transmission Electron Microscope

The Thermo Scientific Talos F200C TEM is a 20-200 kV thermionic (scanning) transmission electron microscope uniquely designed for performance and productivity across a wide range of samples and applications, such as 2D and 3D imaging of cells, organelles, asbestos, polymers, and soft materials, both at ambient and cryogenic temperatures.

It elevates the imaging quality of beam-sensitive materials with its optional, motorized, retractable cryo-box and low-dose technique. Additionally, a side-entry retractable energy dispersive spectroscopy (EDS) detector can be added to the configuration to enable chemical analysis. The large C-Twin pole piece gap, which provides high application flexibility, combined with a reproducibly performing electron column, opens new opportunities for high-resolution 3D characterization, in situ dynamic observations, and diffraction applications, with a special emphasis on high-contrast imaging and cryo-TEM. The Talos F200C TEM is equipped with the fast 4k × 4k Thermo Scientific Ceta 16M Camera, which provides a large field-of-view and fast imaging, with high sensitivity, on a 64-bit platform.

Thermo Scientific Maps Software enables intuitive image-based navigation over a whole sample and easy correlation of results across imaging platforms. In order to retrieve large-area imaging at high-resolution Maps Software automatically acquires and stitches images to document the entire area of interest with exceptional quality. Maps Software can be used across tools and within the tool. It supports image import, overlay and alignment from other microscopes, such as SEM and light microscopy. This enables digital zoom from correlated low-magnification TEM and/or SEM to high-resolution TEM (HRTEM), which provides valuable contextual information.


Talos F200C Transmission Electron Microscope features

Superior images

High-contrast, high-quality TEM and STEM imaging with simultaneous, multiple signal detection with up to four-channel integrated STEM detectors.

Auto-alignments

All daily TEM tunings, such as focus, eucentric height, center beam shift, center condenser aperture, and rotation center are automated.

Improved productivity and reproducibility

Ultra-stable column and remote operation with SmartCam and constant power objective lenses for quick mode and HT switches. Fast, easy switching for multi-user environments.

Chemical composition data

Flexible EDS analysis reveals chemical information.

Space for more

Large analytical pole piece gap, 180° stage tilt range, and large z-range allow you to add tomography holders, in situ sample holders, and more.

Ceta CMOS Camera

The large field-of-view of the 4k × 4K Ceta CMOS Camera enables live digital zooming with high sensitivity and high speed over the entire high-tension range.


Specifications

Formatvorlage für Produkttabellen-Spezifikationen

TEM information limit

  • 0.18

TEM point resolution (nm)

  • 0.30

STEM resolution (nm)

  • 0.20

Applications

Prozesskontrolle mittels Elektronenmikroskopie

Prozesskontrolle mittels Elektronenmikroskopie

Die moderne Industrie verlangt einen hohen Durchsatz bei erstklassiger Qualität. Diese Balance wird durch eine robuste Prozesskontrolle aufrechterhalten. REM- und TEM-Geräte mit spezieller Automatisierungssoftware bieten schnelle, mehrskalige Informationen für die Überwachung und Verbesserung von Prozessen.

 

Qualitätskontrolle und Fehleranalyse mittels Elektronenmikroskopie

Qualitätskontrolle und Fehleranalyse

Qualitätskontrolle und Qualitätssicherung sind in der modernen Industrie von entscheidender Bedeutung. Wir bieten eine Reihe von EM- und Spektroskopiegeräten für die mehrskalige und multimodale Analyse von Mängeln, mit denen Sie zuverlässige und fundierte Entscheidungen für die Kontrolle und Verbesserung von Prozessen treffen können.

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Grundlagenforschung in der Materialforschung

Neuartige Materialien werden in immer kleineren Dimensionen untersucht, um ihre physikalischen und chemischen Eigenschaften bestmöglich zu kontrollieren. Die Elektronenmikroskopie gibt Forschern wichtige Einblicke in eine Vielzahl von Materialeigenschaften auf der Mikro- bis Nanoebene.

 


Style Sheet for Komodo Tabs

Techniques

Energiedispersive Röntgenspektroskopie

Die energiedispersive Röntgenspektroskopie (EDS) sammelt detaillierte Elementinformationen zusammen mit elektronenmikroskopischen Aufnahmen und liefert einen entscheidenden Kontext zur chemischen Zusammensetzung für EM-Beobachtungen. Mittels der EDS kann die chemische Zusammensetzung aus schnellen, ganzheitlichen Oberflächenscans bis hin zu einzelnen Atomen bestimmt werden.

Weitere Informationen ›

3D-EDS-Tomographie

Die moderne Materialforschung ist zunehmend auf die Nanoanalyse in drei Dimensionen angewiesen. Die 3D-Charakterisierung, einschließlich Zusammensetzungsdaten für den vollständigen chemischen und strukturellen Kontext, ist mit 3D-EM und energiedispersiver Röntgenspektroskopie möglich.

Weitere Informationen ›

EDS-Elementanalyse

Die EDS liefert entscheidende Informationen zur Zusammensetzung, die für Beobachtungen in der Elektronenmikroskopie wichtig sind. Insbesondere unsere einzigartigen Super-X und Dual-X Detektorsysteme bieten Optionen für einen verbesserten Durchsatz und/oder eine höhere Empfindlichkeit, sodass Sie die Datenerfassung entsprechend Ihrer Forschungsschwerpunkte optimieren können.

Weitere Informationen ›

Atomare Elementzuordnung mit EDS

Die EDS mit atomarer Auflösung liefert einen beispiellosen chemischen Kontext für die Materialanalyse, indem sie die Elementidentität einzelner Atome differenziert. In Kombination mit hochauflösender TEM ist es möglich, die genaue Organisation der Atome in einer Probe zu beobachten.

Weitere Informationen ›

Elektronenenergieverlustspektroskopie

Die materialwissenschaftliche Forschung profitiert von hochauflösender EELS (Electron Energy Loss Spectroscopy) für eine breite Palette analytischer Anwendungen. Dazu gehören eine Elementkartierung mit hohem Durchsatz und hohem Signal-Rausch-Verhältnis sowie die Untersuchung von Oxidationszuständen und Oberflächenphononen.

Weitere Informationen ›

In-situ-Experimente

Die direkte Echtzeitbeobachtung mikrostruktureller Veränderungen mit der Elektronenmikroskopie ist notwendig, um die Grundprinzipien dynamischer Prozesse wie Rekristallisation, Kornwachstum und Phasenumwandlung während der Erwärmung, Kühlung und Benetzung zu verstehen.

Weitere Informationen ›

Partikelanalyse

Die Partikelanalyse spielt eine entscheidende Rolle bei der Erforschung und Qualitätskontrolle von Nanomaterialien. Die Auflösung im Nanometerbereich und die hervorragende Bildgebung der Elektronenmikroskopie können mit spezieller Software zur schnellen Charakterisierung von Pulvern und Partikeln kombiniert werden.

Weitere Informationen ›

Mehrskalenanalyse

Neuartige Materialien müssen mit immer höherer Auflösung analysiert werden, wobei der größere Kontext der Probe erhalten bleiben muss. Die Mehrskalenanalyse ermöglicht die Korrelation verschiedener Geräte und Modalitäten zur Bildgebung wie Röntgen-Mikro-CT, DualBeam, Laser-PFIB, REM und TEM.

Weitere Informationen ›

Automatisierter Partikel-Workflow

Der automatisierte Nanopartikel-Workflow (APW) ist ein Arbeitsablauf für die Nanopartikelanalyse unter Verwendung des Transmissionselektronenmikroskops, der eine großflächige, hochauflösende Bildgebung und Datenerfassung im Nanobereich mit der Verarbeitung im laufenden Betrieb bietet.

Weitere Informationen ›

Energiedispersive Röntgenspektroskopie

Die energiedispersive Röntgenspektroskopie (EDS) sammelt detaillierte Elementinformationen zusammen mit elektronenmikroskopischen Aufnahmen und liefert einen entscheidenden Kontext zur chemischen Zusammensetzung für EM-Beobachtungen. Mittels der EDS kann die chemische Zusammensetzung aus schnellen, ganzheitlichen Oberflächenscans bis hin zu einzelnen Atomen bestimmt werden.

Weitere Informationen ›

3D-EDS-Tomographie

Die moderne Materialforschung ist zunehmend auf die Nanoanalyse in drei Dimensionen angewiesen. Die 3D-Charakterisierung, einschließlich Zusammensetzungsdaten für den vollständigen chemischen und strukturellen Kontext, ist mit 3D-EM und energiedispersiver Röntgenspektroskopie möglich.

Weitere Informationen ›

EDS-Elementanalyse

Die EDS liefert entscheidende Informationen zur Zusammensetzung, die für Beobachtungen in der Elektronenmikroskopie wichtig sind. Insbesondere unsere einzigartigen Super-X und Dual-X Detektorsysteme bieten Optionen für einen verbesserten Durchsatz und/oder eine höhere Empfindlichkeit, sodass Sie die Datenerfassung entsprechend Ihrer Forschungsschwerpunkte optimieren können.

Weitere Informationen ›

Atomare Elementzuordnung mit EDS

Die EDS mit atomarer Auflösung liefert einen beispiellosen chemischen Kontext für die Materialanalyse, indem sie die Elementidentität einzelner Atome differenziert. In Kombination mit hochauflösender TEM ist es möglich, die genaue Organisation der Atome in einer Probe zu beobachten.

Weitere Informationen ›

Elektronenenergieverlustspektroskopie

Die materialwissenschaftliche Forschung profitiert von hochauflösender EELS (Electron Energy Loss Spectroscopy) für eine breite Palette analytischer Anwendungen. Dazu gehören eine Elementkartierung mit hohem Durchsatz und hohem Signal-Rausch-Verhältnis sowie die Untersuchung von Oxidationszuständen und Oberflächenphononen.

Weitere Informationen ›

In-situ-Experimente

Die direkte Echtzeitbeobachtung mikrostruktureller Veränderungen mit der Elektronenmikroskopie ist notwendig, um die Grundprinzipien dynamischer Prozesse wie Rekristallisation, Kornwachstum und Phasenumwandlung während der Erwärmung, Kühlung und Benetzung zu verstehen.

Weitere Informationen ›

Partikelanalyse

Die Partikelanalyse spielt eine entscheidende Rolle bei der Erforschung und Qualitätskontrolle von Nanomaterialien. Die Auflösung im Nanometerbereich und die hervorragende Bildgebung der Elektronenmikroskopie können mit spezieller Software zur schnellen Charakterisierung von Pulvern und Partikeln kombiniert werden.

Weitere Informationen ›

Mehrskalenanalyse

Neuartige Materialien müssen mit immer höherer Auflösung analysiert werden, wobei der größere Kontext der Probe erhalten bleiben muss. Die Mehrskalenanalyse ermöglicht die Korrelation verschiedener Geräte und Modalitäten zur Bildgebung wie Röntgen-Mikro-CT, DualBeam, Laser-PFIB, REM und TEM.

Weitere Informationen ›

Automatisierter Partikel-Workflow

Der automatisierte Nanopartikel-Workflow (APW) ist ein Arbeitsablauf für die Nanopartikelanalyse unter Verwendung des Transmissionselektronenmikroskops, der eine großflächige, hochauflösende Bildgebung und Datenerfassung im Nanobereich mit der Verarbeitung im laufenden Betrieb bietet.

Weitere Informationen ›

Style Sheet to change H2 style to p with em-h2-header class

Contact us

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards