48ab - Appl/Samples/Products/Resources/Contact

Energy-dispersive X-ray spectroscopy

Energy-dispersive X-ray spectroscopy (EDS, also abbreviated EDX or XEDS) is an analytical technique that enables the chemical characterization/elemental analysis of materials. A sample excited by an energy source (such as the electron beam of an electron microscope) dissipates some of the absorbed energy by ejecting a core-shell electron. A higher energy outer-shell electron then proceeds to fill its place, releasing the difference in energy as an X-ray that has a characteristic spectrum based on its atom of origin. This allows for the compositional analysis of a given sample volume that has been excited by the energy source. The position of the peaks in the spectrum identifies the element, whereas the intensity of the signal corresponds to the concentration of the element.

EDS elemental mapping

As previously stated, an electron beam provides sufficient energy to eject core-shell electrons and cause X-ray emission. Compositional information, down to the atomic level, can be obtained with the addition of an EDS detector to an electron microscope. As the electron probe is scanned across the sample, characteristic X-rays are emitted and measured; each recorded EDS spectrum is mapped to a specific position on the sample. The quality of the results depends on the signal strength and the cleanliness of the spectrum. Signal strength relies heavily on a good signal-to-noise ratio, particularly for trace element detection and dose minimization (which allows for faster recording and artifact-free results). Cleanliness will impact the number of spurious peaks seen; this is a consequence of the materials that make up the electron column.

EDS materials analysis

  • Sensitive to low concentrations—minimum detection limits below 0.1% in the best cases
  • Affords a high degree of relative precision—typically 2–4%
  • Non-destructive in most situations
  • Usually requires minimal sample preparation effort and time
  • Delivers complete analyses of complex samples quickly, often in under a minute

Advanced and fully integrated EDS solutions are available on Thermo Scientific TEM, SEM and Desktop systems.

Elemental mapping software


Resources

Segmented surface rendering of nanoparticles colored with elements present: silver cores (red) with platinum shells (green). To increase visibility, the platinum shells have been colored semitransparent. Sample Courtesy of Prof. Yi Ding and Prof. Jun Luo, Center for Electron Microscopy, Tianjin University of Technology.

EDS tomography of P-Zn-In nanotubes. Sample courtesy of Dr. Reza Shahbazian Yassar, Michigan Tech University.

Segmented surface rendering of nanoparticles colored with elements present: silver cores (red) with platinum shells (green). To increase visibility, the platinum shells have been colored semitransparent. Sample Courtesy of Prof. Yi Ding and Prof. Jun Luo, Center for Electron Microscopy, Tianjin University of Technology.

EDS tomography of P-Zn-In nanotubes. Sample courtesy of Dr. Reza Shahbazian Yassar, Michigan Tech University.

Applications

Aluminiummineralkorn, festgestellt bei der Prüfung der Sauberkeit von Teilen mittels REM

Technische Sauberkeit

Mehr denn je erfordert die moderne Fertigung zuverlässige, qualitativ hochwertige Komponenten. Mit der Rasterelektronenmikroskopie kann die Sauberkeitsanalyse von Teilen intern durchgeführt werden, sodass Sie eine breite Palette an Analysedaten erhalten und Ihren Produktionszyklus verkürzen können.

Qualitätskontrolle und Fehleranalyse mittels Elektronenmikroskopie

Qualitätskontrolle und Fehleranalyse

Qualitätskontrolle und Qualitätssicherung sind in der modernen Industrie von entscheidender Bedeutung. Wir bieten eine Reihe von EM- und Spektroskopiegeräten für die mehrskalige und multimodale Analyse von Mängeln, mit denen Sie zuverlässige und fundierte Entscheidungen für die Kontrolle und Verbesserung von Prozessen treffen können.

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Grundlagenforschung in der Materialforschung

Neuartige Materialien werden in immer kleineren Dimensionen untersucht, um ihre physikalischen und chemischen Eigenschaften bestmöglich zu kontrollieren. Die Elektronenmikroskopie gibt Forschern wichtige Einblicke in eine Vielzahl von Materialeigenschaften auf der Mikro- bis Nanoebene.

 


Samples


Batterieforschung

Die Entwicklung von Batterien wird durch die Multiskalen-Analyse mit Mikro-CT, REM und TEM, Raman-Spektroskopie, XPS und digitaler 3D-Visualisierung und 3D-Analyse ermöglicht. Erfahren Sie, wie dieser Ansatz die strukturellen und chemischen Informationen liefert, die für den Bau besserer Batterien benötigt werden.

Weitere Informationen ›


Polymerforschung

Die Mikrostruktur von Polymeren bestimmt die Eigenschaften und die Leistungsfähigkeit des Materials. Die Elektronenmikroskopie ermöglicht eine umfassende Analyse der Morphologie und Zusammensetzung von Polymeren im Mikroskalenbereich für Anwendungen in der F+E und Qualitätskontrolle.

Weitere Informationen ›


Metallforschung

Die effektive Produktion von Metallen erfordert eine präzise Kontrolle von Einschlüssen und Ausscheidungen. Unsere automatisierten Geräte können eine Vielzahl von Aufgaben ausführen, die für die Metallanalyse wichtig sind, einschließlich der Zählung von Nanopartikeln, der chemischen Analyse mittels EDS und der Vorbereitung von TEM-Proben.

Weitere Informationen ›


Öl und Gas

Da die Nachfrage nach Öl und Gas anhält, besteht ein ständiger Bedarf an einer effizienten und effektiven Gewinnung von Kohlenwasserstoffen. Thermo Fisher Scientific bietet eine Reihe von Mikroskopie- und Spektroskopielösungen für eine Vielzahl von Anwendungen in der Petrochemie an.

Weitere Informationen ›


Nanopartikel

Materialien haben im Nanobereich grundsätzlich andere Eigenschaften als im Makrobereich. Um diese zu untersuchen, können S/TEM-Geräte mit energiedispersiver Röntgenspektroskopie kombiniert und so Daten mit einer Auflösung im Nanometerbereich und sogar darunter erfasst werden.

Weitere Informationen ›


Geologische Forschung

Die Geowissenschaften beruhen auf einer konsistenten und präzisen, mehrskaligen Beobachtung von Merkmalen in Gesteinsproben. Die REM-EDS ermöglicht in Kombination mit Automatisierungssoftware eine direkte, umfangreiche Analyse der Textur und Mineralzusammensetzung für die petrologische und mineralogische Forschung.

Weitere Informationen ›


Forensik

Mit der Elektronenmikroskopie können im Rahmen einer forensischen Untersuchung Mikrospuren in Beweismaterial analysiert und verglichen werden. Zu den kompatiblen Proben gehören Glas- und Farbsplitter, Werkzeugspuren, Drogen, Sprengstoffe und GSR (Schmauchspuren).

Weitere Informationen ›


2D-Materialien

Die Forschung an neuartigen Materialien interessiert sich zunehmend für die Struktur von niederdimensionalen Materialien. Die Rastertransmissionselektronenmikroskopie mit Sondenkorrektur und Monochromatisierung ermöglicht eine hochauflösende zweidimensionale Materialbildgebung.

Weitere Informationen ›


Katalyseforschung

Katalysatoren sind für einen Großteil der modernen industriellen Prozesse von entscheidender Bedeutung. Ihre Effizienz hängt von der mikroskopischen Zusammensetzung und Morphologie der katalytischen Partikel ab; EM mit EDS eignet sich ideal für die Untersuchung dieser Eigenschaften.

Weitere Informationen ›


Materialprüfung für die Automobilindustrie

Jedes Bauteil in einem modernen Fahrzeug ist auf Sicherheit, Effizienz und Leistung ausgelegt. Die detaillierte Charakterisierung von Materialien für Automobile mittels Elektronenmikroskopie und Spektroskopie liefert Informationen für wichtige Prozessentscheidungen, Produktverbesserungen und neue Materialien.

Weitere Informationen ›


Products

Formatvorlage für das Original der Instrumentenkarten

Spectra Ultra

  • Neue bildgebende und spektroskopische Funktionen für die strahlenempfindlichsten Materialien
  • Ein Fortschritt in der EDS-Detektion mit Ultra-X
  • Säule zur Aufrechterhaltung der Probenintegrität.

Spectra 200

  • Hochauflösende und kontrastreiche Bildgebung für Beschleunigungsspannungen von 30 bis 200 kV
  • Symmetrische S-TWIN/X-TWIN-Objektivlinse mit breitem Polstück-Design von 5,4 mm
  • Sub-Angström-STEM-Bildauflösung von 60 bis 200 kV

Spectra 300

  • Höchste Auflösung struktureller und chemischer Informationen auf atomarer Ebene
  • Flexibler Hochspannungsbereich von 30 bis 300 kV
  • Kondensorsystem mit drei Linsen

Talos L120C TEM

  • Erhöhte Stabilität
  • 4k × 4k Ceta CMOS-Kamera
  • TEM-Vergrößerungsbereich von 25 bis 650 kX
  • Die flexible EDS-Analyse offenbart chemische Informationen

Talos F200i TEM

  • Hochwertige R/TEM-Bilder und präzise EDS
  • Erhältlich mit Dual-EDS-Technologie
  • Beste Allround-in-situ-Funktionen
  • Bildgebung mit großem Sichtfeld bei hoher Geschwindigkeit

Talos F200X TEM

  • Hohe(r) Auflösung/Durchsatz bei der STEM-Bildaufnahme und chemischen Analyse
  • Mit In-situ-Probenhaltern für dynamische Experimente
  • Mit Velox Software für die schnelle und einfache Erfassung und Analyse multimodaler Daten

Talos F200C TEM

  • Die flexible EDS-Analyse offenbart chemische Informationen
  • Kontrastreiche, hochwertige TEM- und STEM-Bildgebung
  • Die Ceta 16-Megapixel-CMOS-Kamera bietet ein großes Sichtfeld und eine hohe Auslesegeschwindigkeit

Talos F200S TEM

  • Präzise Daten zur chemischen Zusammensetzung
  • Leistungsstarke Bildgebung und präzise Kompositionsanalyse für die dynamische Mikroskopie
  • Mit Velox Software für die schnelle und einfache Erfassung und Analyse multimodaler Daten

Helios Hydra DualBeam

  • 4 schnell schaltbare Ionenspezies (Xe, Ar, O, N) für die optimierte PFIB-Verarbeitung unterschiedlichster Materialien
  • Ga-freie TEM-Probenvorbereitung
  • REM-Bildaufnahme mit extrem hoher Auflösung

Helios 5 PFIB DualBeam

  • Galliumfreie STEM- und TEM-Probenvorbereitung
  • Multimodale Untergrund- und 3D-Informationen
  • 2,5-μA-Xenonplasma-FIB-Säule der nächsten Generation

Helios 5 DualBeam

  • Vollautomatische, hochwertige, ultradünne TEM-Probenvorbereitung
  • Hohe Durchsatzleistung, hochauflösende Untergrund- und 3D-Charakterisierung
  • Schnelle Nanoprototyping-Funktionen

Verios 5 XHR SEM

  • Monochromatisierte REM-Technologie für eine Auflösung im Subnanometerbereich über den gesamten Energiebereich von 1 bis 30 keV
  • Einfacher Zugang zu Kathodenstrahlenergien von nur 20 eV
  • Ausgezeichnete Stabilität mit Piezo-Tisch als Standard

Quattro ESEM

  • Extrem vielseitiges, hochauflösendes FEG-REM mit einzigartiger Umweltfreundlichkeit (ESEM)
  • Alle Informationen aus allen Proben bei gleichzeitiger SE- und BSE-Bildgebung in jeder Betriebsart beobachten

Prisma E REM

  • Einstiegs-REM mit ausgezeichneter Bildqualität
  • Einfache und schnelle Probenladung und Navigation für mehrere Proben
  • Dank speziell dafür vorgesehener Vakuummodi mit einer Vielzahl von Materialien kompatibel

VolumeScope 2 REM

  • Isotrope 3D-Daten aus großen Volumina
  • Hoher Kontrast und hohe Auflösung in Hoch- und Niedervakuum-Modi
  • Einfacher Wechsel zwischen normaler REM-Verwendung und Serial Block-Face Imaging (serielle Blockflächenbildgebung)

Apreo 2 REM

  • Hochleistungs-REM für eine Allround-Auflösung im Nanometer- oder Subnanometer-Bereich
  • T1-Rückstreudetektor in der Säule für empfindlichen Materialkontrast mit TV-Rate
  • Hervorragende Leistung bei langen Arbeitsabständen (10 mm)

SCIOS 2 DualBeam

  • Umfassende Unterstützung von magnetischen und nicht leitenden Proben
  • Untergrund- und 3D-Charakterisierung im Hochdurchsatz
  • Erweiterte Anwenderfreundlichkeit und Automatisierungsfunktionen

Phenom XL G2 Desktop-REM

  • Für große Proben (100 x 100 mm) und ideal für die Automatisierung
  • Auflösung < 10 nm und bis zu 200.000-fache Vergrößerung; Beschleunigungsspannung von 4,8 bis zu 20 kV
  • Optional vollständig integrierter EDS- und BSE-Detektor

Phenom ProX G6 Desktop-REM

  • Hochleistungsfähiges Desktop-REM mit integriertem EDS-Detektor
  • Auflösung < 6 nm (SE) und < 8 nm (BSE); Vergrößerung bis zu 350.000-fach
  • Optionaler SE-Detektor

Phenom Pro G6 Desktop-REM

  • Hochleistungsfähiges Desktop-REM
  • Auflösung < 6 nm (SE) und < 8 nm (BSE); Vergrößerung bis zu 350.000-fach
  • Optionaler SE-Detektor

Phenom ParticleX AM Desktop-REM

  • Vielseitiges Desktop-REM mit Automatisierungssoftware für die Herstellung von Additiven
  • Auflösung < 10 nm; Vergrößerung bis zu 200.000-fach
  • Optionaler SE-Detektor

Phenom ParticleX TC Desktop-REM

  • Vielseitiges Desktop-REM mit Automatisierungssoftware für technische Sauberkeit
  • Auflösung < 10 nm; Vergrößerung bis zu 200.000-fach
  • Optionaler SE-Detektor

Phenom Pure G6 Desktop-REM

  • Desktop-REM der Einstiegsklasse
  • Auflösung < 15 nm; Vergrößerung bis zu 175.000-fach
  • Langlebige CeB6-Quelle

Phenom Perception GSR Desktop-REM

  • Speziell dafür vorgesehenes automatisiertes GSR Desktop-REM
  • Auflösung < 10 nm; Vergrößerung bis zu 200.000-fach
  • Langlebige CeB6-Quelle

Phenom Pharos G2 Desktop-REM

  • FEG-Quelle mit einer Beschleunigungsspannung im Bereich von 2 bis 15 kV
  • Auflösung von < 2,5 nm (SE) und < 4,0 nm (BSE) bei 15 kV; bis zu 1.000.000-fache Vergrößerung
  • Optional vollständig integrierter EDS- und SE-Detektor

AsbestoMetric

  • Automatisiertes Tool für Bilderfassung, Fasererkennung und Berichterstellung
  • Unterstützte EDS-Analyse mit der Überprüfung von Fasern
  • ISO-Standardbericht zur Asbestanalyse

Avizo Software
Materialwissenschaft

  • Unterstützung für Multidaten/Multiansicht, Multikanal, Zeitreihen, sehr große Datenmengen
  • Erweiterte automatische 2D/3D-Registrierung im Multimodus
  • Algorithmen zur Artefaktreduzierung

Inspect 3D Software

  • Bildverarbeitungstools und Filter für die Kreuzkorrelation
  • Merkmalsverfolgung zur Bildausrichtung
  • Algebraisches Rekonstruktionsverfahren für den iterativen Projektionsvergleich

Maps Software

  • Erfassung hochaufgelöster Bilder über große Bereiche hinweg
  • Einfache Suche der gewünschten Regionen
  • Automatisierung des Bilderfassungsprozesses
  • Korrelierung von Daten aus verschiedenen Quellen

Elementkartierung

  • Schnelle und zuverlässige Informationen über die Verteilung der Elemente innerhalb der Probe oder entlang der ausgewählten Linie
  • Leicht zu exportierende und auszuwertende Ergebnisse

3D Reconstruction

  • Intuitive Benutzeroberfläche, maximale Einsatzfähigkeit
  • Intuitive, vollautomatische Benutzeroberfläche
  • Basierend auf der „Shape from Shading“-Technologie, keine Neigung des Objekttischs erforderlich

Velox

  • Ein Experimente-Feld auf der linken Seite des Bearbeitungsfensters
  • Quantitative Kartierung in Echtzeit
  • Interaktive Detektorlayout-Oberfläche für reproduzierbare Steuerung und Einrichtung
Style Sheet for Komodo Tabs
Style Sheet to change H2 style to p with em-h2-header class

Contact us

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.