Search Thermo Fisher Scientific
Search Thermo Fisher Scientific
Countless technical innovations are directly or indirectly linked to novel materials. To fuel continued innovation, researchers want to deepen their understanding of the physical and chemical properties of materials (morphological, structural, magnetic, thermal, and mechanical) at macro-, micro-, and nanoscales.
There are many reasons to understand and improve the properties of materials, thereby increasing their utility and value. Strength, ductility, density, corrosion resistance, and electrical conductance are just a few of the properties that can be vital for enhanced or even entirely new applications of a material.
In the fields of polymer and catalysis research, chemists and chemical engineers want to better understand the relationships between material structure and function at the micro- and nanometer scales. Their discoveries lead to new materials systems with targeted functionality, longer active lifetimes, lower replacement costs, improved strength, and better manufacturability.
The exciting field of nanodevices is focused on developing miniaturized technology with unique functionality for electronic, magnetic, mechanical, and optical systems. Sensors, actuators, and microfluidic devices are all in high demand to help solve global energy, communications, and critical monitoring challenges.
As scientists expand their knowledge of material structures, they also want to understand how materials behave in response to light, temperature, pressure, and other stimuli. Additionally, two-dimensional observations do not always yield answers in a three-dimensional world. Imaging, analysis, and materials characterization must therefore deliver real-world visibility by generating information in 3D under a variety of environmental conditions.
It is clear that innovative materials play essential roles in safety, clean energy, transportation, human health, and industrial productivity. Whether exploring alternative energy sources or developing stronger, lighter materials and sophisticated nanodevices, Thermo Fisher Scientific provides a broad range of spectroscopy and electron microscopy tools for the fundamental research and development of new materials.
Die Entwicklung von Batterien wird durch die Multiskalen-Analyse mit Mikro-CT, REM und TEM, Raman-Spektroskopie, XPS und digitaler 3D-Visualisierung und 3D-Analyse ermöglicht. Erfahren Sie, wie dieser Ansatz die strukturellen und chemischen Informationen liefert, die für den Bau besserer Batterien benötigt werden.
Die Mikrostruktur von Polymeren bestimmt die Eigenschaften und die Leistungsfähigkeit des Materials. Die Elektronenmikroskopie ermöglicht eine umfassende Analyse der Morphologie und Zusammensetzung von Polymeren im Mikroskalenbereich für Anwendungen in der F+E und Qualitätskontrolle.
Die effektive Produktion von Metallen erfordert eine präzise Kontrolle von Einschlüssen und Ausscheidungen. Unsere automatisierten Geräte können eine Vielzahl von Aufgaben ausführen, die für die Metallanalyse wichtig sind, einschließlich der Zählung von Nanopartikeln, der chemischen Analyse mittels EDS und der Vorbereitung von TEM-Proben.
Katalysatoren sind für einen Großteil der modernen industriellen Prozesse von entscheidender Bedeutung. Ihre Effizienz hängt von der mikroskopischen Zusammensetzung und Morphologie der katalytischen Partikel ab; EM mit EDS eignet sich ideal für die Untersuchung dieser Eigenschaften.
Die Forschung an neuartigen Materialien interessiert sich zunehmend für die Struktur von niederdimensionalen Materialien. Die Rastertransmissionselektronenmikroskopie mit Sondenkorrektur und Monochromatisierung ermöglicht eine hochauflösende zweidimensionale Materialbildgebung.
Materialien haben im Nanobereich grundsätzlich andere Eigenschaften als im Makrobereich. Um diese zu untersuchen, können S/TEM-Geräte mit energiedispersiver Röntgenspektroskopie kombiniert und so Daten mit einer Auflösung im Nanometerbereich und sogar darunter erfasst werden.
Jedes Bauteil in einem modernen Fahrzeug ist auf Sicherheit, Effizienz und Leistung ausgelegt. Die detaillierte Charakterisierung von Materialien für Automobile mittels Elektronenmikroskopie und Spektroskopie liefert Informationen für wichtige Prozessentscheidungen, Produktverbesserungen und neue Materialien.
(S)TEM-Probenvorbereitung
DualBeam-Mikroskope ermöglichen die Vorbereitung hochwertiger, ultradünner Proben für die (S)TEM-Analyse. Dank fortschrittlicher Automatisierung können Anwender jeder Erfahrungsstufe für eine Vielzahl von Materialien Ergebnisse auf Expertenebene erzielen.
3D-Materialcharakterisierung
Die Entwicklung von Materialien erfordert oft eine 3D-Multiskalen-Charakterisierung. DualBeam-Geräte ermöglichen das serielle Schneiden großer Volumina und die anschließende REM-Bildgebung im Nanometerbereich, die zu hochwertigen 3D-Rekonstruktionen der Probe verarbeitet werden kann.
Prototypenentwicklung im Nanometerbereich
Mit der fortschreitenden Miniaturisierung der Technologie steigt die Nachfrage nach Geräten und Strukturen im Nanomaßstab immer weiter an. 3D-Nanoprototypenentwicklung mit DualBeam-Geräten hilft Ihnen, funktionale Prototypen im Mikro- und Nanobereich schnell zu entwerfen, zu erstellen und zu prüfen.
EDS-Elementanalyse
Die EDS liefert entscheidende Informationen zur Zusammensetzung, die für Beobachtungen in der Elektronenmikroskopie wichtig sind. Insbesondere unsere einzigartigen Super-X und Dual-X Detektorsysteme bieten Optionen für einen verbesserten Durchsatz und/oder eine höhere Empfindlichkeit, sodass Sie die Datenerfassung entsprechend Ihrer Forschungsschwerpunkte optimieren können.
3D-EDS-Tomographie
Die moderne Materialforschung ist zunehmend auf die Nanoanalyse in drei Dimensionen angewiesen. Die 3D-Charakterisierung, einschließlich Zusammensetzungsdaten für den vollständigen chemischen und strukturellen Kontext, ist mit 3D-EM und energiedispersiver Röntgenspektroskopie möglich.
Atomare Elementzuordnung mit EDS
Die EDS mit atomarer Auflösung liefert einen beispiellosen chemischen Kontext für die Materialanalyse, indem sie die Elementidentität einzelner Atome differenziert. In Kombination mit hochauflösender TEM ist es möglich, die genaue Organisation der Atome in einer Probe zu beobachten.
ColorSEM
Unter Verwendung der Live-EDS (energiedispersive Röntgenspektroskopie) mit Live-Quantifizierung verwandelt die ColorSEM Technologie die REM-Bildgebung in eine Farbtechnik. Jeder Anwender kann nun kontinuierlich Elementdaten erfassen, um umfassendere Informationen als je zuvor zu erhalten.
Bildgebung mit HRSTEM und HRTEM
Die Transmissionselektronenmikroskopie ist für die Charakterisierung der Struktur von Nanopartikeln und Nanomaterialien von unschätzbarem Wert. Hochauflösende STEM und TEM ermöglichen Daten mit einer Auflösung im atomaren Bereich sowie Informationen zur chemischen Zusammensetzung.
Bildgebung mit differenziellem Phasenkontrast
Die moderne Elektronikforschung ist auf die Analyse elektrischer und magnetischer Eigenschaften im Nanobereich angewiesen. Differenzial-Phasenkontrast-STEM (DPC-STEM) kann die Stärke und Verteilung von Magnetfeldern in einer Probe abbilden und die Struktur der magnetischen Domäne darstellen.
Bildgebung von heißen Proben
Das Studium von Materialien unter realen Bedingungen erfordert häufig ein Arbeiten bei hohen Temperaturen. Das Verhalten von Materialien beim Rekristallisieren, Schmelzen, Verformen oder Reagieren in Gegenwart von Wärme kann in situ mit Rasterelektronenmikroskopie oder DualBeam-Geräten untersucht werden.
Umwelt-REM (EREM)
Mit Umwelt-REM können Materialien in ihrem ursprünglichen Zustand abgebildet werden. Dies ist ideal geeignet für Forscher im Hochschulbereich und der Industrie, die Proben prüfen und analysieren müssen, die nass, schmutzig, reaktiv, ausgasend oder anderweitig nicht vakuumtauglich sind.
Elektronenenergieverlustspektroskopie
Die materialwissenschaftliche Forschung profitiert von hochauflösender EELS (Electron Energy Loss Spectroscopy) für eine breite Palette analytischer Anwendungen. Dazu gehören eine Elementkartierung mit hohem Durchsatz und hohem Signal-Rausch-Verhältnis sowie die Untersuchung von Oxidationszuständen und Oberflächenphononen.
Querschnitte
Querschnitte bieten zusätzliche Einblicke, indem sie Informationen über tieferliegende Bereiche aufdecken. DualBeam-Geräte verfügen über hervorragende FIB-Säulen für hochwertige Querschnitte. Mit der Automatisierung ist eine unbeaufsichtigte Hochdurchsatzverarbeitung von Proben möglich.
In-situ-Experimente
Die direkte Echtzeitbeobachtung mikrostruktureller Veränderungen mit der Elektronenmikroskopie ist notwendig, um die Grundprinzipien dynamischer Prozesse wie Rekristallisation, Kornwachstum und Phasenumwandlung während der Erwärmung, Kühlung und Benetzung zu verstehen.
Partikelanalyse
Die Partikelanalyse spielt eine entscheidende Rolle bei der Erforschung und Qualitätskontrolle von Nanomaterialien. Die Auflösung im Nanometerbereich und die hervorragende Bildgebung der Elektronenmikroskopie können mit spezieller Software zur schnellen Charakterisierung von Pulvern und Partikeln kombiniert werden.
Kathodolumineszenz
Kathodolumineszenz (Cathodoluminescence, CL) beschreibt die Emission von Licht aus einem Material, wenn es von einem Elektronenstrahl angeregt wird. Dieses Signal, das von einem speziellen CL-Detektor erfasst wird, enthält Informationen über die Zusammensetzung der Probe, Kristalldefekte oder photonische Eigenschaften.
SIMS
Der TOF-SIMS-Detektor (Time-of-Flight Secondary Ion Mass Spectrometry) für FIB-REM (Rasterelektronenmikroskopie mit fokussiertem Ionenstrahl) ermöglicht die hochauflösende analytische Charakterisierung aller Elemente im Periodensystem, selbst bei niedrigen Konzentrationen.
Mehrskalenanalyse
Neuartige Materialien müssen mit immer höherer Auflösung analysiert werden, wobei der größere Kontext der Probe erhalten bleiben muss. Die Mehrskalenanalyse ermöglicht die Korrelation verschiedener Geräte und Modalitäten zur Bildgebung wie Röntgen-Mikro-CT, DualBeam, Laser-PFIB, REM und TEM.
APT-Probenvorbereitung
Die Atomsondentomographie (Atom Probe Tomography, APT) ermöglicht die 3D-Kompositionsanalyse von Materialien mit atomarer Auflösung. Die Mikroskopie mit fokussiertem Ionenstrahl (Focused Ion Beam, FIB) ist eine äußerst wichtige Technologie für eine qualitativ hochwertige, ausrichtungs- und ortsspezifische Probenpräparation für die APT-Charakterisierung.
Automatisierter Partikel-Workflow
Der automatisierte Nanopartikel-Workflow (APW) ist ein Arbeitsablauf für die Nanopartikelanalyse unter Verwendung des Transmissionselektronenmikroskops, der eine großflächige, hochauflösende Bildgebung und Datenerfassung im Nanobereich mit der Verarbeitung im laufenden Betrieb bietet.
(S)TEM-Probenvorbereitung
DualBeam-Mikroskope ermöglichen die Vorbereitung hochwertiger, ultradünner Proben für die (S)TEM-Analyse. Dank fortschrittlicher Automatisierung können Anwender jeder Erfahrungsstufe für eine Vielzahl von Materialien Ergebnisse auf Expertenebene erzielen.
3D-Materialcharakterisierung
Die Entwicklung von Materialien erfordert oft eine 3D-Multiskalen-Charakterisierung. DualBeam-Geräte ermöglichen das serielle Schneiden großer Volumina und die anschließende REM-Bildgebung im Nanometerbereich, die zu hochwertigen 3D-Rekonstruktionen der Probe verarbeitet werden kann.
Prototypenentwicklung im Nanometerbereich
Mit der fortschreitenden Miniaturisierung der Technologie steigt die Nachfrage nach Geräten und Strukturen im Nanomaßstab immer weiter an. 3D-Nanoprototypenentwicklung mit DualBeam-Geräten hilft Ihnen, funktionale Prototypen im Mikro- und Nanobereich schnell zu entwerfen, zu erstellen und zu prüfen.
EDS-Elementanalyse
Die EDS liefert entscheidende Informationen zur Zusammensetzung, die für Beobachtungen in der Elektronenmikroskopie wichtig sind. Insbesondere unsere einzigartigen Super-X und Dual-X Detektorsysteme bieten Optionen für einen verbesserten Durchsatz und/oder eine höhere Empfindlichkeit, sodass Sie die Datenerfassung entsprechend Ihrer Forschungsschwerpunkte optimieren können.
3D-EDS-Tomographie
Die moderne Materialforschung ist zunehmend auf die Nanoanalyse in drei Dimensionen angewiesen. Die 3D-Charakterisierung, einschließlich Zusammensetzungsdaten für den vollständigen chemischen und strukturellen Kontext, ist mit 3D-EM und energiedispersiver Röntgenspektroskopie möglich.
Atomare Elementzuordnung mit EDS
Die EDS mit atomarer Auflösung liefert einen beispiellosen chemischen Kontext für die Materialanalyse, indem sie die Elementidentität einzelner Atome differenziert. In Kombination mit hochauflösender TEM ist es möglich, die genaue Organisation der Atome in einer Probe zu beobachten.
ColorSEM
Unter Verwendung der Live-EDS (energiedispersive Röntgenspektroskopie) mit Live-Quantifizierung verwandelt die ColorSEM Technologie die REM-Bildgebung in eine Farbtechnik. Jeder Anwender kann nun kontinuierlich Elementdaten erfassen, um umfassendere Informationen als je zuvor zu erhalten.
Bildgebung mit HRSTEM und HRTEM
Die Transmissionselektronenmikroskopie ist für die Charakterisierung der Struktur von Nanopartikeln und Nanomaterialien von unschätzbarem Wert. Hochauflösende STEM und TEM ermöglichen Daten mit einer Auflösung im atomaren Bereich sowie Informationen zur chemischen Zusammensetzung.
Bildgebung mit differenziellem Phasenkontrast
Die moderne Elektronikforschung ist auf die Analyse elektrischer und magnetischer Eigenschaften im Nanobereich angewiesen. Differenzial-Phasenkontrast-STEM (DPC-STEM) kann die Stärke und Verteilung von Magnetfeldern in einer Probe abbilden und die Struktur der magnetischen Domäne darstellen.
Bildgebung von heißen Proben
Das Studium von Materialien unter realen Bedingungen erfordert häufig ein Arbeiten bei hohen Temperaturen. Das Verhalten von Materialien beim Rekristallisieren, Schmelzen, Verformen oder Reagieren in Gegenwart von Wärme kann in situ mit Rasterelektronenmikroskopie oder DualBeam-Geräten untersucht werden.
Umwelt-REM (EREM)
Mit Umwelt-REM können Materialien in ihrem ursprünglichen Zustand abgebildet werden. Dies ist ideal geeignet für Forscher im Hochschulbereich und der Industrie, die Proben prüfen und analysieren müssen, die nass, schmutzig, reaktiv, ausgasend oder anderweitig nicht vakuumtauglich sind.
Elektronenenergieverlustspektroskopie
Die materialwissenschaftliche Forschung profitiert von hochauflösender EELS (Electron Energy Loss Spectroscopy) für eine breite Palette analytischer Anwendungen. Dazu gehören eine Elementkartierung mit hohem Durchsatz und hohem Signal-Rausch-Verhältnis sowie die Untersuchung von Oxidationszuständen und Oberflächenphononen.
Querschnitte
Querschnitte bieten zusätzliche Einblicke, indem sie Informationen über tieferliegende Bereiche aufdecken. DualBeam-Geräte verfügen über hervorragende FIB-Säulen für hochwertige Querschnitte. Mit der Automatisierung ist eine unbeaufsichtigte Hochdurchsatzverarbeitung von Proben möglich.
In-situ-Experimente
Die direkte Echtzeitbeobachtung mikrostruktureller Veränderungen mit der Elektronenmikroskopie ist notwendig, um die Grundprinzipien dynamischer Prozesse wie Rekristallisation, Kornwachstum und Phasenumwandlung während der Erwärmung, Kühlung und Benetzung zu verstehen.
Partikelanalyse
Die Partikelanalyse spielt eine entscheidende Rolle bei der Erforschung und Qualitätskontrolle von Nanomaterialien. Die Auflösung im Nanometerbereich und die hervorragende Bildgebung der Elektronenmikroskopie können mit spezieller Software zur schnellen Charakterisierung von Pulvern und Partikeln kombiniert werden.
Kathodolumineszenz
Kathodolumineszenz (Cathodoluminescence, CL) beschreibt die Emission von Licht aus einem Material, wenn es von einem Elektronenstrahl angeregt wird. Dieses Signal, das von einem speziellen CL-Detektor erfasst wird, enthält Informationen über die Zusammensetzung der Probe, Kristalldefekte oder photonische Eigenschaften.
SIMS
Der TOF-SIMS-Detektor (Time-of-Flight Secondary Ion Mass Spectrometry) für FIB-REM (Rasterelektronenmikroskopie mit fokussiertem Ionenstrahl) ermöglicht die hochauflösende analytische Charakterisierung aller Elemente im Periodensystem, selbst bei niedrigen Konzentrationen.
Mehrskalenanalyse
Neuartige Materialien müssen mit immer höherer Auflösung analysiert werden, wobei der größere Kontext der Probe erhalten bleiben muss. Die Mehrskalenanalyse ermöglicht die Korrelation verschiedener Geräte und Modalitäten zur Bildgebung wie Röntgen-Mikro-CT, DualBeam, Laser-PFIB, REM und TEM.
APT-Probenvorbereitung
Die Atomsondentomographie (Atom Probe Tomography, APT) ermöglicht die 3D-Kompositionsanalyse von Materialien mit atomarer Auflösung. Die Mikroskopie mit fokussiertem Ionenstrahl (Focused Ion Beam, FIB) ist eine äußerst wichtige Technologie für eine qualitativ hochwertige, ausrichtungs- und ortsspezifische Probenpräparation für die APT-Charakterisierung.
Automatisierter Partikel-Workflow
Der automatisierte Nanopartikel-Workflow (APW) ist ein Arbeitsablauf für die Nanopartikelanalyse unter Verwendung des Transmissionselektronenmikroskops, der eine großflächige, hochauflösende Bildgebung und Datenerfassung im Nanobereich mit der Verarbeitung im laufenden Betrieb bietet.
To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.