Advanced materials

Countless technical innovations are directly or indirectly linked to novel materials. To fuel continued innovation, researchers want to deepen their understanding of the physical and chemical properties of materials (morphological, structural, magnetic, thermal, and mechanical) at macro-, micro-, and nanoscales.

There are many reasons to understand and improve the properties of materials, thereby increasing their utility and value. Strength, ductility, density, corrosion resistance, and electrical conductance are just a few of the properties that can be vital for enhanced or even entirely new applications of a material.

Polymer materials and catalysts

In the fields of polymer and catalysis research, chemists and chemical engineers want to better understand the relationships between material structure and function at the micro- and nanometer scales. Their discoveries lead to new materials systems with targeted functionality, longer active lifetimes, lower replacement costs, improved strength, and better manufacturability.

The exciting field of nanodevices is focused on developing miniaturized technology with unique functionality for electronic, magnetic, mechanical, and optical systems. Sensors, actuators, and microfluidic devices are all in high demand to help solve global energy, communications, and critical monitoring challenges.

Materials science research 

As scientists expand their knowledge of material structures, they also want to understand how materials behave in response to light, temperature, pressure, and other stimuli. Additionally, two-dimensional observations do not always yield answers in a three-dimensional world. Imaging, analysis, and materials characterization must therefore deliver real-world visibility by generating information in 3D under a variety of environmental conditions.

It is clear that innovative materials play essential roles in safety, clean energy, transportation, human health, and industrial productivity. Whether exploring alternative energy sources or developing stronger, lighter materials and sophisticated nanodevices, Thermo Fisher Scientific provides a broad range of spectroscopy and electron microscopy tools for the fundamental research and development of new materials.


Resources

Samples


Batterieforschung

Die Entwicklung von Batterien wird durch die Multiskalen-Analyse mit Mikro-CT, REM und TEM, Raman-Spektroskopie, XPS und digitaler 3D-Visualisierung und 3D-Analyse ermöglicht. Erfahren Sie, wie dieser Ansatz die strukturellen und chemischen Informationen liefert, die für den Bau besserer Batterien benötigt werden.

Weitere Informationen ›


Polymerforschung

Die Mikrostruktur von Polymeren bestimmt die Eigenschaften und die Leistungsfähigkeit des Materials. Die Elektronenmikroskopie ermöglicht eine umfassende Analyse der Morphologie und Zusammensetzung von Polymeren im Mikroskalenbereich für Anwendungen in der F+E und Qualitätskontrolle.

Weitere Informationen ›


Metallforschung

Die effektive Produktion von Metallen erfordert eine präzise Kontrolle von Einschlüssen und Ausscheidungen. Unsere automatisierten Geräte können eine Vielzahl von Aufgaben ausführen, die für die Metallanalyse wichtig sind, einschließlich der Zählung von Nanopartikeln, der chemischen Analyse mittels EDS und der Vorbereitung von TEM-Proben.

Weitere Informationen ›


Katalyseforschung

Katalysatoren sind für einen Großteil der modernen industriellen Prozesse von entscheidender Bedeutung. Ihre Effizienz hängt von der mikroskopischen Zusammensetzung und Morphologie der katalytischen Partikel ab; EM mit EDS eignet sich ideal für die Untersuchung dieser Eigenschaften.

Weitere Informationen ›


2D-Materialien

Die Forschung an neuartigen Materialien interessiert sich zunehmend für die Struktur von niederdimensionalen Materialien. Die Rastertransmissionselektronenmikroskopie mit Sondenkorrektur und Monochromatisierung ermöglicht eine hochauflösende zweidimensionale Materialbildgebung.

Weitere Informationen ›


Nanopartikel

Materialien haben im Nanobereich grundsätzlich andere Eigenschaften als im Makrobereich. Um diese zu untersuchen, können S/TEM-Geräte mit energiedispersiver Röntgenspektroskopie kombiniert und so Daten mit einer Auflösung im Nanometerbereich und sogar darunter erfasst werden.

Weitere Informationen ›


Materialprüfung für die Automobilindustrie

Jedes Bauteil in einem modernen Fahrzeug ist auf Sicherheit, Effizienz und Leistung ausgelegt. Die detaillierte Charakterisierung von Materialien für Automobile mittels Elektronenmikroskopie und Spektroskopie liefert Informationen für wichtige Prozessentscheidungen, Produktverbesserungen und neue Materialien.

Weitere Informationen ›

Style Sheet for Komodo Tabs

Techniques

(S)TEM-Probenvorbereitung

DualBeam-Mikroskope ermöglichen die Vorbereitung hochwertiger, ultradünner Proben für die (S)TEM-Analyse. Dank fortschrittlicher Automatisierung können Anwender jeder Erfahrungsstufe für eine Vielzahl von Materialien Ergebnisse auf Expertenebene erzielen.

Weitere Informationen ›

3D-Materialcharakterisierung

Die Entwicklung von Materialien erfordert oft eine 3D-Multiskalen-Charakterisierung. DualBeam-Geräte ermöglichen das serielle Schneiden großer Volumina und die anschließende REM-Bildgebung im Nanometerbereich, die zu hochwertigen 3D-Rekonstruktionen der Probe verarbeitet werden kann.

Weitere Informationen ›

Prototypenentwicklung im Nanometerbereich

Mit der fortschreitenden Miniaturisierung der Technologie steigt die Nachfrage nach Geräten und Strukturen im Nanomaßstab immer weiter an. 3D-Nanoprototypenentwicklung mit DualBeam-Geräten hilft Ihnen, funktionale Prototypen im Mikro- und Nanobereich schnell zu entwerfen, zu erstellen und zu prüfen.

Weitere Informationen ›

EDS-Elementanalyse

Die EDS liefert entscheidende Informationen zur Zusammensetzung, die für Beobachtungen in der Elektronenmikroskopie wichtig sind. Insbesondere unsere einzigartigen Super-X und Dual-X Detektorsysteme bieten Optionen für einen verbesserten Durchsatz und/oder eine höhere Empfindlichkeit, sodass Sie die Datenerfassung entsprechend Ihrer Forschungsschwerpunkte optimieren können.

Weitere Informationen ›

3D-EDS-Tomographie

Die moderne Materialforschung ist zunehmend auf die Nanoanalyse in drei Dimensionen angewiesen. Die 3D-Charakterisierung, einschließlich Zusammensetzungsdaten für den vollständigen chemischen und strukturellen Kontext, ist mit 3D-EM und energiedispersiver Röntgenspektroskopie möglich.

Weitere Informationen ›

Atomare Elementzuordnung mit EDS

Die EDS mit atomarer Auflösung liefert einen beispiellosen chemischen Kontext für die Materialanalyse, indem sie die Elementidentität einzelner Atome differenziert. In Kombination mit hochauflösender TEM ist es möglich, die genaue Organisation der Atome in einer Probe zu beobachten.

Weitere Informationen ›

ColorSEM

Unter Verwendung der Live-EDS (energiedispersive Röntgenspektroskopie) mit Live-Quantifizierung verwandelt die ColorSEM Technologie die REM-Bildgebung in eine Farbtechnik. Jeder Anwender kann nun kontinuierlich Elementdaten erfassen, um umfassendere Informationen als je zuvor zu erhalten.

Weitere Informationen ›

Bildgebung mit HRSTEM und HRTEM

Die Transmissionselektronenmikroskopie ist für die Charakterisierung der Struktur von Nanopartikeln und Nanomaterialien von unschätzbarem Wert. Hochauflösende STEM und TEM ermöglichen Daten mit einer Auflösung im atomaren Bereich sowie Informationen zur chemischen Zusammensetzung.

Weitere Informationen ›

Bildgebung mit differenziellem Phasenkontrast

Die moderne Elektronikforschung ist auf die Analyse elektrischer und magnetischer Eigenschaften im Nanobereich angewiesen. Differenzial-Phasenkontrast-STEM (DPC-STEM) kann die Stärke und Verteilung von Magnetfeldern in einer Probe abbilden und die Struktur der magnetischen Domäne darstellen.

Weitere Informationen ›

Bildgebung von heißen Proben

Das Studium von Materialien unter realen Bedingungen erfordert häufig ein Arbeiten bei hohen Temperaturen. Das Verhalten von Materialien beim Rekristallisieren, Schmelzen, Verformen oder Reagieren in Gegenwart von Wärme kann in situ mit Rasterelektronenmikroskopie oder DualBeam-Geräten untersucht werden.

Weitere Informationen ›

Umwelt-REM (EREM)

Mit Umwelt-REM können Materialien in ihrem ursprünglichen Zustand abgebildet werden. Dies ist ideal geeignet für Forscher im Hochschulbereich und der Industrie, die Proben prüfen und analysieren müssen, die nass, schmutzig, reaktiv, ausgasend oder anderweitig nicht vakuumtauglich sind.

Weitere Informationen ›

Elektronenenergieverlustspektroskopie

Die materialwissenschaftliche Forschung profitiert von hochauflösender EELS (Electron Energy Loss Spectroscopy) für eine breite Palette analytischer Anwendungen. Dazu gehören eine Elementkartierung mit hohem Durchsatz und hohem Signal-Rausch-Verhältnis sowie die Untersuchung von Oxidationszuständen und Oberflächenphononen.

Weitere Informationen ›

Querschnitte

Querschnitte bieten zusätzliche Einblicke, indem sie Informationen über tieferliegende Bereiche aufdecken. DualBeam-Geräte verfügen über hervorragende FIB-Säulen für hochwertige Querschnitte. Mit der Automatisierung ist eine unbeaufsichtigte Hochdurchsatzverarbeitung von Proben möglich.

Weitere Informationen ›

In-situ-Experimente

Die direkte Echtzeitbeobachtung mikrostruktureller Veränderungen mit der Elektronenmikroskopie ist notwendig, um die Grundprinzipien dynamischer Prozesse wie Rekristallisation, Kornwachstum und Phasenumwandlung während der Erwärmung, Kühlung und Benetzung zu verstehen.

Weitere Informationen ›

Partikelanalyse

Die Partikelanalyse spielt eine entscheidende Rolle bei der Erforschung und Qualitätskontrolle von Nanomaterialien. Die Auflösung im Nanometerbereich und die hervorragende Bildgebung der Elektronenmikroskopie können mit spezieller Software zur schnellen Charakterisierung von Pulvern und Partikeln kombiniert werden.

Weitere Informationen ›

Kathodolumineszenz

Kathodolumineszenz (Cathodoluminescence, CL) beschreibt die Emission von Licht aus einem Material, wenn es von einem Elektronenstrahl angeregt wird. Dieses Signal, das von einem speziellen CL-Detektor erfasst wird, enthält Informationen über die Zusammensetzung der Probe, Kristalldefekte oder photonische Eigenschaften.

Weitere Informationen ›

SIMS

Der TOF-SIMS-Detektor (Time-of-Flight Secondary Ion Mass Spectrometry) für FIB-REM (Rasterelektronenmikroskopie mit fokussiertem Ionenstrahl) ermöglicht die hochauflösende analytische Charakterisierung aller Elemente im Periodensystem, selbst bei niedrigen Konzentrationen.

Weitere Informationen ›

Mehrskalenanalyse

Neuartige Materialien müssen mit immer höherer Auflösung analysiert werden, wobei der größere Kontext der Probe erhalten bleiben muss. Die Mehrskalenanalyse ermöglicht die Korrelation verschiedener Geräte und Modalitäten zur Bildgebung wie Röntgen-Mikro-CT, DualBeam, Laser-PFIB, REM und TEM.

Weitere Informationen ›

APT-Probenvorbereitung

Die Atomsondentomographie (Atom Probe Tomography, APT) ermöglicht die 3D-Kompositionsanalyse von Materialien mit atomarer Auflösung. Die Mikroskopie mit fokussiertem Ionenstrahl (Focused Ion Beam, FIB) ist eine äußerst wichtige Technologie für eine qualitativ hochwertige, ausrichtungs- und ortsspezifische Probenpräparation für die APT-Charakterisierung.

Weitere Informationen ›

Automatisierter Partikel-Workflow

Der automatisierte Nanopartikel-Workflow (APW) ist ein Arbeitsablauf für die Nanopartikelanalyse unter Verwendung des Transmissionselektronenmikroskops, der eine großflächige, hochauflösende Bildgebung und Datenerfassung im Nanobereich mit der Verarbeitung im laufenden Betrieb bietet.

Weitere Informationen ›

(S)TEM-Probenvorbereitung

DualBeam-Mikroskope ermöglichen die Vorbereitung hochwertiger, ultradünner Proben für die (S)TEM-Analyse. Dank fortschrittlicher Automatisierung können Anwender jeder Erfahrungsstufe für eine Vielzahl von Materialien Ergebnisse auf Expertenebene erzielen.

Weitere Informationen ›

3D-Materialcharakterisierung

Die Entwicklung von Materialien erfordert oft eine 3D-Multiskalen-Charakterisierung. DualBeam-Geräte ermöglichen das serielle Schneiden großer Volumina und die anschließende REM-Bildgebung im Nanometerbereich, die zu hochwertigen 3D-Rekonstruktionen der Probe verarbeitet werden kann.

Weitere Informationen ›

Prototypenentwicklung im Nanometerbereich

Mit der fortschreitenden Miniaturisierung der Technologie steigt die Nachfrage nach Geräten und Strukturen im Nanomaßstab immer weiter an. 3D-Nanoprototypenentwicklung mit DualBeam-Geräten hilft Ihnen, funktionale Prototypen im Mikro- und Nanobereich schnell zu entwerfen, zu erstellen und zu prüfen.

Weitere Informationen ›

EDS-Elementanalyse

Die EDS liefert entscheidende Informationen zur Zusammensetzung, die für Beobachtungen in der Elektronenmikroskopie wichtig sind. Insbesondere unsere einzigartigen Super-X und Dual-X Detektorsysteme bieten Optionen für einen verbesserten Durchsatz und/oder eine höhere Empfindlichkeit, sodass Sie die Datenerfassung entsprechend Ihrer Forschungsschwerpunkte optimieren können.

Weitere Informationen ›

3D-EDS-Tomographie

Die moderne Materialforschung ist zunehmend auf die Nanoanalyse in drei Dimensionen angewiesen. Die 3D-Charakterisierung, einschließlich Zusammensetzungsdaten für den vollständigen chemischen und strukturellen Kontext, ist mit 3D-EM und energiedispersiver Röntgenspektroskopie möglich.

Weitere Informationen ›

Atomare Elementzuordnung mit EDS

Die EDS mit atomarer Auflösung liefert einen beispiellosen chemischen Kontext für die Materialanalyse, indem sie die Elementidentität einzelner Atome differenziert. In Kombination mit hochauflösender TEM ist es möglich, die genaue Organisation der Atome in einer Probe zu beobachten.

Weitere Informationen ›

ColorSEM

Unter Verwendung der Live-EDS (energiedispersive Röntgenspektroskopie) mit Live-Quantifizierung verwandelt die ColorSEM Technologie die REM-Bildgebung in eine Farbtechnik. Jeder Anwender kann nun kontinuierlich Elementdaten erfassen, um umfassendere Informationen als je zuvor zu erhalten.

Weitere Informationen ›

Bildgebung mit HRSTEM und HRTEM

Die Transmissionselektronenmikroskopie ist für die Charakterisierung der Struktur von Nanopartikeln und Nanomaterialien von unschätzbarem Wert. Hochauflösende STEM und TEM ermöglichen Daten mit einer Auflösung im atomaren Bereich sowie Informationen zur chemischen Zusammensetzung.

Weitere Informationen ›

Bildgebung mit differenziellem Phasenkontrast

Die moderne Elektronikforschung ist auf die Analyse elektrischer und magnetischer Eigenschaften im Nanobereich angewiesen. Differenzial-Phasenkontrast-STEM (DPC-STEM) kann die Stärke und Verteilung von Magnetfeldern in einer Probe abbilden und die Struktur der magnetischen Domäne darstellen.

Weitere Informationen ›

Bildgebung von heißen Proben

Das Studium von Materialien unter realen Bedingungen erfordert häufig ein Arbeiten bei hohen Temperaturen. Das Verhalten von Materialien beim Rekristallisieren, Schmelzen, Verformen oder Reagieren in Gegenwart von Wärme kann in situ mit Rasterelektronenmikroskopie oder DualBeam-Geräten untersucht werden.

Weitere Informationen ›

Umwelt-REM (EREM)

Mit Umwelt-REM können Materialien in ihrem ursprünglichen Zustand abgebildet werden. Dies ist ideal geeignet für Forscher im Hochschulbereich und der Industrie, die Proben prüfen und analysieren müssen, die nass, schmutzig, reaktiv, ausgasend oder anderweitig nicht vakuumtauglich sind.

Weitere Informationen ›

Elektronenenergieverlustspektroskopie

Die materialwissenschaftliche Forschung profitiert von hochauflösender EELS (Electron Energy Loss Spectroscopy) für eine breite Palette analytischer Anwendungen. Dazu gehören eine Elementkartierung mit hohem Durchsatz und hohem Signal-Rausch-Verhältnis sowie die Untersuchung von Oxidationszuständen und Oberflächenphononen.

Weitere Informationen ›

Querschnitte

Querschnitte bieten zusätzliche Einblicke, indem sie Informationen über tieferliegende Bereiche aufdecken. DualBeam-Geräte verfügen über hervorragende FIB-Säulen für hochwertige Querschnitte. Mit der Automatisierung ist eine unbeaufsichtigte Hochdurchsatzverarbeitung von Proben möglich.

Weitere Informationen ›

In-situ-Experimente

Die direkte Echtzeitbeobachtung mikrostruktureller Veränderungen mit der Elektronenmikroskopie ist notwendig, um die Grundprinzipien dynamischer Prozesse wie Rekristallisation, Kornwachstum und Phasenumwandlung während der Erwärmung, Kühlung und Benetzung zu verstehen.

Weitere Informationen ›

Partikelanalyse

Die Partikelanalyse spielt eine entscheidende Rolle bei der Erforschung und Qualitätskontrolle von Nanomaterialien. Die Auflösung im Nanometerbereich und die hervorragende Bildgebung der Elektronenmikroskopie können mit spezieller Software zur schnellen Charakterisierung von Pulvern und Partikeln kombiniert werden.

Weitere Informationen ›

Kathodolumineszenz

Kathodolumineszenz (Cathodoluminescence, CL) beschreibt die Emission von Licht aus einem Material, wenn es von einem Elektronenstrahl angeregt wird. Dieses Signal, das von einem speziellen CL-Detektor erfasst wird, enthält Informationen über die Zusammensetzung der Probe, Kristalldefekte oder photonische Eigenschaften.

Weitere Informationen ›

SIMS

Der TOF-SIMS-Detektor (Time-of-Flight Secondary Ion Mass Spectrometry) für FIB-REM (Rasterelektronenmikroskopie mit fokussiertem Ionenstrahl) ermöglicht die hochauflösende analytische Charakterisierung aller Elemente im Periodensystem, selbst bei niedrigen Konzentrationen.

Weitere Informationen ›

Mehrskalenanalyse

Neuartige Materialien müssen mit immer höherer Auflösung analysiert werden, wobei der größere Kontext der Probe erhalten bleiben muss. Die Mehrskalenanalyse ermöglicht die Korrelation verschiedener Geräte und Modalitäten zur Bildgebung wie Röntgen-Mikro-CT, DualBeam, Laser-PFIB, REM und TEM.

Weitere Informationen ›

APT-Probenvorbereitung

Die Atomsondentomographie (Atom Probe Tomography, APT) ermöglicht die 3D-Kompositionsanalyse von Materialien mit atomarer Auflösung. Die Mikroskopie mit fokussiertem Ionenstrahl (Focused Ion Beam, FIB) ist eine äußerst wichtige Technologie für eine qualitativ hochwertige, ausrichtungs- und ortsspezifische Probenpräparation für die APT-Charakterisierung.

Weitere Informationen ›

Automatisierter Partikel-Workflow

Der automatisierte Nanopartikel-Workflow (APW) ist ein Arbeitsablauf für die Nanopartikelanalyse unter Verwendung des Transmissionselektronenmikroskops, der eine großflächige, hochauflösende Bildgebung und Datenerfassung im Nanobereich mit der Verarbeitung im laufenden Betrieb bietet.

Weitere Informationen ›

Products

Formatvorlage für das Original der Instrumentenkarten

Helios Hydra DualBeam

  • 4 schnell schaltbare Ionenspezies (Xe, Ar, O, N) für die optimierte PFIB-Verarbeitung unterschiedlichster Materialien
  • Ga-freie TEM-Probenvorbereitung
  • REM-Bildaufnahme mit extrem hoher Auflösung

Helios 5 DualBeam

  • Vollautomatische, hochwertige, ultradünne TEM-Probenvorbereitung
  • Hohe Durchsatzleistung, hochauflösende Untergrund- und 3D-Charakterisierung
  • Schnelle Nanoprototyping-Funktionen

Helios 5 PFIB DualBeam

  • Galliumfreie STEM- und TEM-Probenvorbereitung
  • Multimodale Untergrund- und 3D-Informationen
  • 2,5-μA-Xenonplasma-FIB-Säule der nächsten Generation

SCIOS 2 DualBeam

  • Umfassende Unterstützung von magnetischen und nicht leitenden Proben
  • Untergrund- und 3D-Charakterisierung im Hochdurchsatz
  • Erweiterte Anwenderfreundlichkeit und Automatisierungsfunktionen

Spectra Ultra

  • Neue bildgebende und spektroskopische Funktionen für die strahlenempfindlichsten Materialien
  • Ein Fortschritt in der EDS-Detektion mit Ultra-X
  • Säule zur Aufrechterhaltung der Probenintegrität.

Spectra 300

  • Höchste Auflösung struktureller und chemischer Informationen auf atomarer Ebene
  • Flexibler Hochspannungsbereich von 30 bis 300 kV
  • Kondensorsystem mit drei Linsen

Spectra 200

  • Hochauflösende und kontrastreiche Bildgebung für Beschleunigungsspannungen von 30 bis 200 kV
  • Symmetrische S-TWIN/X-TWIN-Objektivlinse mit breitem Polstück-Design von 5,4 mm
  • Sub-Angström-STEM-Bildauflösung von 60 bis 200 kV

Talos L120C TEM

  • Erhöhte Stabilität
  • 4k × 4k Ceta CMOS-Kamera
  • TEM-Vergrößerungsbereich von 25 bis 650 kX
  • Die flexible EDS-Analyse offenbart chemische Informationen

Talos F200X TEM

  • Hohe(r) Auflösung/Durchsatz bei der STEM-Bildaufnahme und chemischen Analyse
  • Mit In-situ-Probenhaltern für dynamische Experimente
  • Mit Velox Software für die schnelle und einfache Erfassung und Analyse multimodaler Daten

Talos F200C TEM

  • Die flexible EDS-Analyse offenbart chemische Informationen
  • Kontrastreiche, hochwertige TEM- und STEM-Bildgebung
  • Die Ceta 16-Megapixel-CMOS-Kamera bietet ein großes Sichtfeld und eine hohe Auslesegeschwindigkeit

Talos F200i TEM

  • Hochwertige R/TEM-Bilder und präzise EDS
  • Erhältlich mit Dual-EDS-Technologie
  • Beste Allround-in-situ-Funktionen
  • Bildgebung mit großem Sichtfeld bei hoher Geschwindigkeit

Talos F200S TEM

  • Präzise Daten zur chemischen Zusammensetzung
  • Leistungsstarke Bildgebung und präzise Kompositionsanalyse für die dynamische Mikroskopie
  • Mit Velox Software für die schnelle und einfache Erfassung und Analyse multimodaler Daten

Axia ChemiSEM

  • Quantitative Elementkartierung in Echtzeit
  • Rasterelektronenmikroskopische Bildgebung mit hoher Wiedergabetreue
  • Flexibel und einfach anzuwenden, auch für Anfänger
  • Wartungsfreundlich

VolumeScope 2 REM

  • Isotrope 3D-Daten aus großen Volumina
  • Hoher Kontrast und hohe Auflösung in Hoch- und Niedervakuum-Modi
  • Einfacher Wechsel zwischen normaler REM-Verwendung und Serial Block-Face Imaging (serielle Blockflächenbildgebung)

Prisma E REM

  • Einstiegs-REM mit ausgezeichneter Bildqualität
  • Einfache und schnelle Probenladung und Navigation für mehrere Proben
  • Dank speziell dafür vorgesehener Vakuummodi mit einer Vielzahl von Materialien kompatibel

Quattro ESEM

  • Extrem vielseitiges, hochauflösendes FEG-REM mit einzigartiger Umweltfreundlichkeit (ESEM)
  • Alle Informationen aus allen Proben bei gleichzeitiger SE- und BSE-Bildgebung in jeder Betriebsart beobachten

Apreo 2 REM

  • Hochleistungs-REM für eine Allround-Auflösung im Nanometer- oder Subnanometer-Bereich
  • T1-Rückstreudetektor in der Säule für empfindlichen Materialkontrast mit TV-Rate
  • Hervorragende Leistung bei langen Arbeitsabständen (10 mm)

Phenom ParticleX TC Desktop-REM

  • Vielseitiges Desktop-REM mit Automatisierungssoftware für technische Sauberkeit
  • Auflösung < 10 nm; Vergrößerung bis zu 200.000-fach
  • Optionaler SE-Detektor

Phenom Pharos G2 Desktop-REM

  • FEG-Quelle mit einer Beschleunigungsspannung im Bereich von 2 bis 15 kV
  • Auflösung von < 2,5 nm (SE) und < 4,0 nm (BSE) bei 15 kV; bis zu 1.000.000-fache Vergrößerung
  • Optional vollständig integrierter EDS- und SE-Detektor

Phenom ParticleX AM Desktop-REM

  • Vielseitiges Desktop-REM mit Automatisierungssoftware für die Herstellung von Additiven
  • Auflösung < 10 nm; Vergrößerung bis zu 200.000-fach
  • Optionaler SE-Detektor

Avizo Software
Materialwissenschaft

  • Unterstützung für Multidaten/Multiansicht, Multikanal, Zeitreihen, sehr große Datenmengen
  • Erweiterte automatische 2D/3D-Registrierung im Multimodus
  • Algorithmen zur Artefaktreduzierung

Maps Software

  • Erfassung hochaufgelöster Bilder über große Bereiche hinweg
  • Einfache Suche der gewünschten Regionen
  • Automatisierung des Bilderfassungsprozesses
  • Korrelierung von Daten aus verschiedenen Quellen

FiberMetric

  • Zeit sparen durch automatisierte Messungen
  • Schnelle und automatisierte Erfassung aller statistischen Daten
  • Anzeigen und Messen von Mikro- und Nanofasern mit unübertroffener Genauigkeit

ParticleMetric

  • In ProSuite integrierte Software für Online- und Offline-Analysen
  • Korrelieren von Partikelmerkmalen wie Durchmesser, Kreisförmigkeit, Seitenverhältnis und Konvexität
  • Erstellen von Bilddatensätzen mit Automated Image Mapping

Elementkartierung

  • Schnelle und zuverlässige Informationen über die Verteilung der Elemente innerhalb der Probe oder entlang der ausgewählten Linie
  • Leicht zu exportierende und auszuwertende Ergebnisse

3D Reconstruction

  • Intuitive Benutzeroberfläche, maximale Einsatzfähigkeit
  • Intuitive, vollautomatische Benutzeroberfläche
  • Basierend auf der „Shape from Shading“-Technologie, keine Neigung des Objekttischs erforderlich

NanoBuilder

  • CAD-basiertes Prototyping
  • Vollautomatische Auftragsausführung, Objekttischnavigation, Fräsbearbeitung und Abscheidung
  • Automatische Ausrichtung und Driftkontrolle

Inspect 3D Software

  • Bildverarbeitungstools und Filter für die Kreuzkorrelation
  • Merkmalsverfolgung zur Bildausrichtung
  • Algebraisches Rekonstruktionsverfahren für den iterativen Projektionsvergleich

Velox

  • Ein Experimente-Feld auf der linken Seite des Bearbeitungsfensters
  • Quantitative Kartierung in Echtzeit
  • Interaktive Detektorlayout-Oberfläche für reproduzierbare Steuerung und Einrichtung

Style Sheet to change H2 style to p with em-h2-header class

Contact us

Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
the materials science

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.